Rome, H. J. S., Chu, T. T., Marois, D., Huang, C.-H.
, Madsen, P. & Jensen, J. (2021).
Accounting for genetic architecture for body weight improves accuracy of predicting breeding values in a commercial line of broilers.
Journal of Animal Breeding and Genetics,
138(5), 528-540. Article 528-540.
https://doi.org/10.1111/jbg.12546
Eydivandi, S., Roudbar, M. A., Ardestani, S. S., Momen, M.
& Sahana, G. (2021).
A selection signatures study among Middle Eastern and European sheep breeds.
Journal of Animal Breeding and Genetics,
138(5), 574-588.
https://doi.org/10.1111/jbg.12536,
https://doi.org/10.1111/jbg.12536
Hjortø, L., Henryon, M.
, Liu, H., Berg, P., Thomasen, J. R. & Sørensen, A. C. (2021).
Pre-selection against a lethal recessive allele in breeding schemes with optimum-contribution selection or truncation selection.
Genetics Selection Evolution,
53, Article 75.
https://doi.org/10.1186/s12711-021-00669-4
De, T., Goncalves, A.
, Speed, D., Froguel, P., NFBC consortium, Gaffney, D. J., Johnson, M. R., Jarvelin, M.-R. & Coin, L. J. (2021).
Signatures of TSPAN8 variants associated with human metabolic regulation and diseases.
iScience,
24(8), Article 102893.
https://doi.org/10.1016/j.isci.2021.102893
Manzanilla Pech, C. I. V., Løvendahl, P., Mansan Gordo, D. G., Difford, G., Pryce, J., Schenkel, F. S., Wegmann, S., Miglior, F., Chud, T. C. S., Moate, P. J., Williams, S. R. O., Richardson, C. M., Stothard, P.
& Lassen, J. (2021).
Breeding for reduced methane emission and feed-efficient Holstein cows: An international response.
Journal of Dairy Science,
104(8), 8983-9001.
https://doi.org/10.3168/jds.2020-19889
Johansen, K., Hein, L., Spleth, P.
, Vestergaard, M., Nielsen, H. M. & Kargo, M. (2021).
Comparing growth and feed intake in pure- and crossbred heifers fed different energy concentrations. In E. Strandberg, L. Pinotti, S. Messori, D. Kenny, M. Lee, J. F. Hocquette, V. A. P. Cadavez, S. Millet, R. Evans, T. Veldkamp, M. Pastell & G. Pollott (Eds.),
Book of Abstracts of the 72nd Annual Meeting of the European Federation of Animal Science (pp. 521). Wageningen Academic Publishers.
https://doi.org/10.3920/978-90-8686-918-3
Gautason, E., Sahana, G., Su, G., Benjamínsson, B. H., Jóhannesson, G.
& Guldbrandtsen, B. (2021).
Erratum to: Short communication: investigation of the feasibility of genomic selection in Icelandic Cattle.
Journal of Animal Science,
99(8), Article skab234.
https://doi.org/10.1093/jas/skab234
Zaalberg, R. M., Poulsen, N. A., Bovenhuis, H.
, Sehested, J., Larsen, L. B. & Buitenhuis, A. J. (2021).
Genetic analysis on infrared-predicted milk minerals for Danish dairy cattle.
Journal of Dairy Science,
104(8), 8947-8958.
https://doi.org/10.3168/jds.2020-19638
Mei, Q., Fu, C.
, Sahana, G., Chen, Y., Yin, L., Miao, Y., Zhao, S. & Xiang, T. (2021).
Identification of new semen trait-related candidate genes in Duroc boars through genome-wide association and weighted gene co-expression network analyses.
Journal of Animal Science,
99(7), Article skab188.
https://doi.org/10.1093/jas/skab188
Cao, L., Mulder, H. A.
, Liu, H., Nielsen, H. M. & S⊘rensen, A. C. (2021).
Competitive gene flow does not necessarily maximize the genetic gain of genomic breeding programs in the presence of genotype-by-environment interaction.
Journal of Dairy Science,
104(7), 8122-8134.
https://doi.org/10.3168/jds.2020-19823
Clasen, J. B.
, Kargo, M., Østergaard, S., Fikse, W. F., Rydhmer, L. & Strandberg, E. (2021).
Genetic consequences of terminal crossbreeding, genomic test, sexed semen, and beef semen in dairy herds.
Journal of Dairy Science,
104(7), 8062-8075.
https://doi.org/10.3168/jds.2020-20028
Cuyabano, B. C. D.
, Rovere, G., Lim, D., Kim, T. H., Lee, H. K., Lee, S. H. & Gondro, C. (2021).
GPS coordinates for modelling correlated herd effects in genomic prediction models applied to Hanwoo beef cattle.
Animals,
11(7), Article 2050.
https://doi.org/10.3390/ani11072050
Jørgensen, U., Kristensen, T., Jørgensen, J. R., Kongsted, A. G., De Notaris, C., Nielsen, C., Mortensen, E. Ø., Ambye-Jensen, M., Jensen, S. K., Stødkilde-Jørgensen, L., Dalsgaard, T. K., Møller, A. H., Grøn Sørensen, C., Asp, T., Lehmann Olsen, F. & Gylling, M. (2021).
Green biorefining of grassland biomass. DCA - Nationalt Center for Fødevarer og Jordbrug. DCA rapport No. 193
https://dcapub.au.dk/djfpublikation/index.asp?action=show&id=1480
Milkevych, V., Karaman, E., Sahana, G., Janss, L., Cai, Z. & Lund, M. S. (2021).
MeSCoT: The tool for quantitative trait simulation through the mechanistic modeling of genes' regulatory interactions.
G3 (Bethesda, Md.),
11(7), Article jkab133.
https://doi.org/10.1093/g3journal/jkab133
Gautason, E., Sahana, G., Su, G., Benjamínsson, B. H., Jóhannesson, G.
& Guldbrandtsen, B. (2021).
Short Communication: Investigation of the feasibility of genomic selection in Icelandic Cattle.
Journal of Animal Science,
99(7), Article skab139.
https://doi.org/10.1093/jas/skab139
Olijhoek, D., Hellwing, A. L. F., Lund, P., Weisbjerg, M. R., Løvendahl, P. & Børsting, C. F. (2021).
Enteric methane emission of Holstein and Jersey dairy cows at high dietary concentrate proportions. Poster session presented at Meeting in iClimate.
Laursen, S. F.
, Hansen, L. S., Bahrndorff, S.
, Nielsen, H. M., Noer, N. K., Renault, D.
, Sahana, G., Sørensen, J. G. & Kristensen, T. N. (2021).
Data on: contrasting manual and automated assessment of larval body size and thermal stress responses in black soldier flies and houseflies. Dataset, Dryad Digital Repository.
https://doi.org/10.5061/dryad.cjsxksn5p
Laursen, S. F.
, Hansen, L. S., Bahrndorff, S., Nielsen, H. M., Noer, N. K., Renault, D.
, Sahana, G., Sørensen, J. G. & Kristensen, T. N. (2021).
Contrasting Manual and Automated Assessment of Thermal Stress Responses and Larval Body Size in Black Soldier Flies and Houseflies.
Insects,
12(5), Article 380.
https://doi.org/10.3390/insects12050380
Gebreyesus, G., Poulsen, N. A., Larsen, M. K., Larsen, L. B., Sørensen, E. S., Würtz Heegaard, C. & Buitenhuis, A. J. (2021).
Vitamin B12 and transcobalamin in bovine milk: Genetic variation and genome-wide association with loci along the genome.
JDS Communications ,
2(3), 127-131.
https://doi.org/10.3168/jdsc.2020-0048
Zhu, Z., Difford, G., Noel, S. J., Lassen, J., Løvendahl, P. & Hojberg, O. (2021).
Stability Assessment of the Rumen Bacterial and Archaeal Communities in Dairy Cows Within a Single Lactation and Its Association With Host Phenotype.
Frontiers in Microbiology,
12, Article 636223.
https://doi.org/10.3389/fmicb.2021.636223
Fu, Y., Thomas, A., Gasior, D., Harper, J., Gay, A., Jones, C., Hegarty, M.
, Asp, T., Fradera-Sola, A., Armstead, I. & Fernandez-Fuentes, N. (2021).
A comparison of shared patterns of differential gene expression and gene ontologies in response to water-stress in roots and leaves of four diverse genotypes of Lolium and Festuca spp. temperate pasture grasses.
PLOS ONE,
16(4), Article e0249636.
https://doi.org/10.1371/journal.pone.0249636
Gao, H., Su, G., Jensen, J., Madsen, P., Christensen, O. F., Ask, B.
, Poulsen, B. G., Ostersen, T.
& Nielsen, B. (2021).
Genetic parameters and genomic prediction for feed intake recorded at the group and individual level in different production systems for growing pigs.
Genetics Selection Evolution,
53(1), Article 33.
https://doi.org/10.1186/s12711-021-00624-3
Luo, H., Brito, L. F., Li, X.
, Su, G., Dou, J., Xu, W., Yan, X., Zhang, H., Guo, G., Liu, L. & Wang, Y. (2021).
Genetic parameters for rectal temperature, respiration rate, and drooling score in Holstein cattle and their relationships with various fertility, production, body conformation, and health traits.
Journal of Dairy Science,
104(4), 4390-4403.
https://doi.org/10.3168/jds.2020-19192
Luo, H., Li, X., Hu, L., Xu, W., Chu, Q.
, Liu, A., Guo, G., Liu, L., Brito, L. F. & Wang, Y. (2021).
Genomic analyses and biological validation of candidate genes for rectal temperature as an indicator of heat stress in Holstein cattle.
Journal of Dairy Science,
104(4), 4441-4451.
https://doi.org/10.3168/jds.2020-18725
Shi, S., Li, X., Fang, L.
, Liu, A., Su, G., Zhang, Y., Luobu, B., Ding, X. & Zhang, S. (2021).
Genomic Prediction Using Bayesian Regression Models With Global-Local Prior.
Frontiers in Genetics,
12, Article 628205.
https://doi.org/10.3389/fgene.2021.628205
Olesen, J. E., Ingvartsen, K. L., Williams, M. H., Hertel, O., Jacobsen, C. S., Lund, M. S., Bach, H. & Halberg, N. (2021).
Besparelser rammer grøn forskning på Aarhus Universitet: Er politikerne overhovedet klar over konsekvenserne? Altinget.
https://www.altinget.dk/forskning/artikel/forskere-nedskaeringer-i-forskningskapacitet-koster-paa-den-groenne-omstilling
Schmidtmann, C., Thaller, G.
, Kargo, M., Hinrichs, D. & Ettema, J. (2021).
Derivation of economic values for German dairy breeds by means of a bio-economic model—with special emphasis on functional traits.
Journal of Dairy Science,
104(3), 3144-3157.
https://doi.org/10.3168/jds.2019-17635
Mohammadabadi, M., Bordbar, F.
, Jensen, J., Du, M. & Guo, W. (2021).
Key genes regulating skeletal muscle development and growth in farm animals.
Animals,
11(3), Article 835.
https://doi.org/10.3390/ani11030835
Li, Y., Pu, L., Shi, L.
, Gao, H., Zhang, P., Wang, L. & Zhao, F. (2021).
Revealing New Candidate Genes for Teat Number Relevant Traits in Duroc Pigs Using Genome-Wide Association Studies.
Animals,
11(3), Article 806.
https://doi.org/10.3390/ani11030806
Zhang, H.
, Liu, A., Wang, Y., Luo, H., Yan, X.
, Guo, X., Li, X., Liu, L.
& Su, G. (2021).
Genetic Parameters and Genome-Wide Association Studies of Eight Longevity Traits Representing Either Full or Partial Lifespan in Chinese Holsteins.
Frontiers in Genetics,
12, Article 634986.
https://doi.org/10.3389/fgene.2021.634986/full
Johannsen, I., Kilsgaard, B., Milkevych, V. & Moore, D. (2021).
Design, modelling, and experimental validation of a scalable continuous-flow hydrothermal liquefaction pilot plant.
Processes,
9(2), 1-18. Article 234.
https://doi.org/10.3390/pr9020234
Christensen, B., Zachariae, E. D., Poulsen, N. A., Buitenhuis, A. J., Larsen, L. B. & Sørensen, E. S. (2021).
Factors influencing milk osteopontin concentration based on measurements from Danish Holstein cows.
Journal of Dairy Research,
88(1), 89 - 94.
https://doi.org/10.1017/S0022029921000054
Ask, B., Pedersen, L. V.
, Christensen, O. F., Nielsen, H. M., Turner, S. P.
& Nielsen, B. (2021).
Selection for social genetic effects in purebreds increases growth in crossbreds.
Genetics, selection, evolution : GSE,
53(1), Article 15.
https://doi.org/10.1186/s12711-021-00609-2
Villumsen, T. M., Su, G., Guldbrandtsen, B.
, Asp, T. & Lund, M. S. (2021).
Genomic selection in American mink (Neovison vison) using a single-step genomic best linear unbiased prediction model for size and quality traits graded on live mink.
Journal of Animal Science,
99(1), Article skab003.
https://doi.org/10.1093/jas/skab003
Kargo, M., Clasen, J. B., Nielsen, H. M., Byskov, K.
& Norberg, E. (2021).
Heterosis and breed effects for milk production and udder health traits in crosses between Danish Holstein, Danish Red, and Danish Jersey.
Journal of Dairy Science,
104(1), 678-682.
https://doi.org/10.3168/jds.2019-17866
Ma, X., Christensen, O. F., Gao, H., Huang, R.
, Nielsen, B., Madsen, P., Jensen, J., Ostersen, T., Li, P.
, Shirali, M. & Su, G. (2021).
Prediction of breeding values for group-recorded traits including genomic information and an individually recorded correlated trait.
Heredity,
126(1), 206-217.
https://doi.org/10.1038/s41437-020-0339-3
Afiani, F. A., Joezy-Shekalgorabi, S., Amin-Afshar, M., Sadeghi, A.-A.
& Jensen, J. (2021).
Additive genetic and permanent environmental correlation between different parts of lactation in moderate and cold regions.
Czech Journal of Animal Science,
66(4), 112-121.
https://doi.org/10.17221/254/2020-CJAS
Schmidtmann, C.
, Schönherz, A., Guldbrandtsen, B., Marjanovic, J., Calus, M., Hinrichs, D. & Thaller, G. (2021).
Assessing the genetic background and genomic relatedness of red cattle populations originating from Northern Europe.
Genetics Selection Evolution,
53(1), Article 23.
https://doi.org/10.1186/s12711-021-00613-6
Clasen, J. B., Kargo, M., Fikse, W. F., Strandberg, E., Wallenbeck, A.
, Østergaard, S. & Rydhmer, L. (2021).
Conservation of a native dairy cattle breed through terminal crossbreeding with commercial dairy breeds.
Acta Agriculturae Scandinavica, Section A - Animal Science,
70(1).
https://doi.org/10.1080/09064702.2020.1867632
Houlahan, K., Schenkel, F. S., Hailemariam, D.
, Lassen, J., Kargo, M., Cole, J. B., Connor, E. E., Wegmann, S., Oliveira, G. A., Miglior, F., Fleming, A., Chud, T. C. S. & Baes, C. F. (2021).
Effects of incorporating dry matter intake and residual feed intake into a selection index for dairy cattle using deterministic modeling.
Animals,
11(4), Article 1157.
https://doi.org/10.3390/ani11041157
Stephansen, R. B., Lidauer, M., Nielsen, U. S., Pösö, J., Fikse, F.
, Manzanilla Pech, C. I. V. & Aamand, G. P. (2021).
Genomic prediction of residual feed intake in the Nordic breeds using data from research herds and 3D cameras in commercial herds. In
Interbull Bulletin: Proceedings of the 2021 Interbull Meeting (Vol. 56 (2021), pp. 162-166)
https://journal.interbull.org/index.php/ib/article/view/66
Eiríksson, J. H., Byskov, K., Thomassen, J. R.
, Su, G. & Christensen, O. F. (2021).
Genomic predictions of crossbred dairy cows based on breed of origin of alleles. 520-520. Abstract from 72nd Annual Meeting of the European Federation of Animal Science, Davos, Switzerland.
Shi, R., Brito, L. F.
, Liu, A., Luo, H., Chen, Z., Liu, L., Guo, G., Mulder, H., Ducro, B., van der Linden, A. & Wang, Y. (2021).
Genotype-by-environment interaction in Holstein heifer fertility traits using single-step genomic reaction norm models.
BMC Genomics,
22(1), Article 193.
https://doi.org/10.1186/s12864-021-07496-3
Tessema, B. B., Liu, H., Sørensen, A. C., Andersen, J. R.
& Jensen, J. (2020).
Strategies Using Genomic Selection to Increase Genetic Gain in Breeding Programs for Wheat.
Frontiers in Genetics,
11, Article 578123.
https://doi.org/10.3389/fgene.2020.578123
Harwood, S. L., Nielsen, N. S., Jensen, K. T., Nielsen, P. K., Thøgersen, I. B. & Enghild, J. J. (2020).
α2-macroglobulin-like protein 1 can conjugate and inhibit proteases through their hydroxyl groups, because of an enhanced reactivity of its thiol ester.
Journal of Biological Chemistry,
295(49), 16732-16742.
https://doi.org/10.1074/jbc.RA120.015694
Ba, H.
, Cai, Z., Gao, H., Qin, T., Liu, W., Xie, L., Zhang, Y., Jing, B., Wang, D. & Li, C. (2020).
Chromosome-level genome assembly of Tarim red deer, Cervus elaphus yarkandensis.
Scientific Data,
7(1), Article 187.
https://doi.org/10.1038/s41597-020-0537-0
Mao, X., Sahana, G., Johansson, A. M.
, Liu, A., Ismael, A., Løvendahl, P., De Koning, D.-J.
& Guldbrandtsen, B. (2020).
Genome-wide association mapping for dominance effects in female fertility using real and simulated data from Danish Holstein cattle.
Scientific Reports,
10(1), Article 2953.
https://doi.org/10.1038/s41598-020-59788-5
Calabrese, V., Scuto, M., Salinaro, A. T.
, Dionisio, G., Modafferi, S., Ontario, M. L., Greco, V., Sciuto, S., Schmitt, C. P., Calabrese, E. J. & Peters, V. (2020).
Hydrogen sulfide and carnosine: Modulation of oxidative stress and inflammation in kidney and brain axis.
Antioxidants,
9(12), 1-35. Article 1303.
https://doi.org/10.3390/antiox9121303
Liu, A., Lund, M. S., Boichard, D., Mao, X.
, Karaman, E., Fritz, S., Aamand, G. P., Wang, Y.
& Su, G. (2020).
Imputation for sequencing variants preselected to a customized low-density chip.
Scientific Reports,
10, Article 9524.
https://doi.org/10.1038/s41598-020-66523-7
Zhang, Q., Cai, Z., Lhomme, M.
, Sahana, G., Lesnik, P., Guerin, M., Fredholm, M. & Karlskov-Mortensen, P. (2020).
Inclusion of endophenotypes in a standard GWAS facilitate a detailed mechanistic understanding of genetic elements that control blood lipid levels.
Scientific Reports,
10(1), Article 18434.
https://doi.org/10.1038/s41598-020-75612-6
Morgante, F., Huang, W.
, Sørensen, P., Maltecca, C. & Mackay, T. F. C. (2020).
Leveraging Multiple Layers of Data To Predict Drosophila Complex Traits.
G3 (Bethesda, Md.),
10(12), 4599-4613.
https://doi.org/10.1534/g3.120.401847
Vestergaard, M., Spleth, P., Stephansen, R.
, Kargo, M., Ettema, J. F. & Fogh, A. (2020).
Utilizing beef x dairy crossbreds for beef production – Danish experiences. In
Book of Abstracts of the 71st Annual Meeting of the European Federation of Animal Science (Vol. 26, pp. 317). Wageningen Academic Publishers.
https://doi.org/10.3920/978-90-8686-900-8
Li, J.
, Gao, H., Madsen, P., Li, R., Liu, W., Bao, P., Xue, G., Gao, Y., Di, X.
& Su, G. (2020).
Impact of the Order of Legendre Polynomials in Random Regression Model on Genetic Evaluation for Milk Yield in Dairy Cattle Population.
Frontiers in Genetics,
11, Article 586155.
https://doi.org/10.3389/fgene.2020.586155
Malinowska, M., Nagy, I., Wagemaker, C. A. M.
, Ruud, A. K., Svane, S. F., Thorup-Kristensen, K., Jensen, C. S., Eriksen, B., Krusell, L., Jahoor, A., Jensen, J., Eriksen, L. B.
& Asp, T. (2020).
The cytosine methylation landscape of spring barley revealed by a new reduced representation bisulfite sequencing pipeline, WellMeth.
The Plant Genome,
13(3), e20049. Article e20049.
https://doi.org/10.1002/tpg2.20049
Guo, X., Sarup, P. M., Jensen, J. D., Jihad, O., Kristensen, N. H.
, Mulder, F. A. A., Jahoor, A.
& Jensen, J. (2020).
Genetic Variance of Metabolomic Features and Their Relationship With Malting Quality Traits in Spring Barley.
Frontiers in Plant Science,
11, Article 575467.
https://doi.org/10.3389/fpls.2020.575467
Poulsen, B. G., Ask, B.
, Nielsen, H. M., Ostersen, T.
& Christensen, O. F. (2020).
Prediction of genetic merit for growth rate in pigs using animal models with indirect genetic effects and genomic information.
Genetics, selection, evolution : GSE,
52(1), Article 58.
https://doi.org/10.1186/s12711-020-00578-y
Eydivandi, S., Sahana, G., Momen, M., Moradi, M. H.
& Schönherz, A. A. (2020).
Genetic diversity in Iranian indigenous sheep vis-à-vis selected exogenous sheep breeds and wild mouflon.
Animal Genetics,
51(5), 772-787.
https://doi.org/10.1111/age.12985
Esfandyari, H., Fè, D., Tessema, B. B., Janss, L. L. & Jensen, J. (2020).
Effects of different strategies for exploiting genomic selection in perennial ryegrass breeding programs.
G3: Genes, Genomes, Genetics,
10(10), 3783-3795.
https://doi.org/10.1534/g3.120.401382
Dettmann, F., Warner, D.
, Buitenhuis, B., Kargo, M., Kjeldsen, A. M. H., Nielsen, N. H., Lefebvre, D. M. & Santschi, D. E. (2020).
Fatty Acid Profiles from Routine Milk Recording as a Decision Tool for Body Weight Change of Dairy Cows after Calving.
Animals,
10(11), 1-14. Article 1958.
https://doi.org/10.3390/ani10111958
Forte, F. P., Schmid, J., Dijkwel, P. P.
, Nagy, I., Hume, D. E., Johnson, R. D., Simpson, W. R., Monk, S. M., Zhang, N., Sehrish, T.
& Asp, T. (2020).
Fungal Endophyte Colonization Patterns Alter Over Time in the Novel Association Between Lolium perenne and Epichloë Endophyte AR37.
Frontiers in Plant Science,
11, Article 570026.
https://doi.org/10.3389/fpls.2020.570026
Manzanilla-Pech, C. I. V., Gordo, D., Difford, G. F., Løvendahl, P. & Lassen, J. (2020).
Multitrait genomic prediction of methane emissions in Danish Holstein cattle.
Journal of Dairy Science,
103(10), 9195-9206.
https://doi.org/10.3168/jds.2019-17857
Madsen, M. D., Villumsen, T. M., Hansen, B. K.
, Møller, S. H., Jensen, J. & Shirali, M. (2020).
Combined analysis of group recorded feed intake and individually recorded body weight and litter size in mink.
Animal : an international journal of animal bioscience,
14(9), 1793-1801.
https://doi.org/10.1017/S1751731120000762
Skovbjerg, C. K., Knudsen, J. N.
, Füchtbauer, W., Stougaard, J., Stoddard, F. L.
, Janss, L. & Andersen, S. U. (2020).
Evaluation of yield, yield stability, and yield–protein relationship in 17 commercial faba bean cultivars.
Legume Science,
2(3), Article e39.
https://doi.org/10.1002/leg3.39
Su, G., Sørensen, A. C., Chu, T. T., Meier, K., Nielsen, T.
& Lund, M. S. (2020).
Impact of phenotypic information and composition of reference population on genomic prediction in fish under the presence of genotype by environment interaction.
Aquaculture,
526, Article 735358.
https://doi.org/10.1016/j.aquaculture.2020.735358
Gebreyesus, G., Sahana, G., Christian Sørensen, A., Lund, M. S. & Su, G. (2020).
Novel approach to incorporate information about recessive lethal genes increases the accuracy of genomic prediction for mortality traits.
Heredity,
125, 155-166.
https://doi.org/10.1038/s41437-020-0329-5
Chu, T. T., Sørensen, A. C., Lund, M. S., Meier, K., Nielsen, T. & Su, G. (2020).
Phenotypically Selective Genotyping Realizes More Genetic Gains in a Rainbow Trout Breeding Program in the Presence of Genotype-by-Environment Interactions.
Frontiers in Genetics,
11, Article 866.
https://doi.org/10.3389/fgene.2020.00866
Tausen, M., Clausen, M. M., Moeskjær, S., Shihavuddin, ASM., Dahl, A. B.
, Janss, L. & Andersen, S. U. (2020).
Greenotyper: Image-based plant phenotyping using distributed computing and deep learning.
Frontiers in Plant Science,
11, Article 1181.
https://doi.org/10.3389/fpls.2020.01181
Zhang, Q., Difford, G., Sahana, G., Løvendahl, P., Lassen, J., Lund, M. S., Guldbrandtsen, B. & Janss, L. (2020).
Bayesian modeling reveals host genetics associated with rumen microbiota jointly influence methane emission in dairy cows.
The ISME Journal,
14(8), 2019-2033.
https://doi.org/10.1038/s41396-020-0663-x
Gan, Q. F., Li, Y. R., Liu, Q. H.
, Lund, M., Su, G. S. & Liang, X. W. (2020).
Genome-wide association studies for the concentrations of insulin, triiodothyronine, and thyroxine in Chinese Holstein cattle.
Tropical Animal Health and Production,
52(4), 1655-1660.
https://doi.org/10.1007/s11250-019-02170-z
Cai, Z., Sarup, P., Ostersen, T.
, Nielsen, B., Fredholm, M., Karlskov-Mortensen, P.
, Sørensen, P., Jensen, J., Guldbrandtsen, B., Lund, M. S., Christensen, O. F. & Sahana, G. (2020).
Genomic diversity revealed by whole-genome sequencing in three Danish commercial pig breeds.
Journal of Animal Science,
98(7), Article 229.
https://doi.org/10.1093/jas/skaa229
Guo, X., Svane, S. F., Füchtbauer, W. S., Andersen, J. R.
, Jensen, J. & Thorup-Kristensen, K. (2020).
Genomic prediction of yield and root development in wheat under changing water availability.
Plant Methods,
16, Article 90.
https://doi.org/10.1186/s13007-020-00634-0