Liu, A., Lund, M. S., Boichard, D., Mao, X.
, Karaman, E., Fritz, S., Aamand, G. P., Wang, Y.
& Su, G. (2020).
Imputation for sequencing variants preselected to a customized low-density chip.
Scientific Reports,
10, Artikel 9524.
https://doi.org/10.1038/s41598-020-66523-7
Zhang, Q., Cai, Z., Lhomme, M.
, Sahana, G., Lesnik, P., Guerin, M., Fredholm, M. & Karlskov-Mortensen, P. (2020).
Inclusion of endophenotypes in a standard GWAS facilitate a detailed mechanistic understanding of genetic elements that control blood lipid levels.
Scientific Reports,
10(1), Artikel 18434.
https://doi.org/10.1038/s41598-020-75612-6
Morgante, F., Huang, W.
, Sørensen, P., Maltecca, C. & Mackay, T. F. C. (2020).
Leveraging Multiple Layers of Data To Predict Drosophila Complex Traits.
G3 (Bethesda, Md.),
10(12), 4599-4613.
https://doi.org/10.1534/g3.120.401847
Vestergaard, M., Spleth, P., Stephansen, R.
, Kargo, M., Ettema, J. F. & Fogh, A. (2020).
Utilizing beef x dairy crossbreds for beef production – Danish experiences. I
Book of Abstracts of the 71st Annual Meeting of the European Federation of Animal Science (Bind 26, s. 317). Wageningen Academic Publishers.
https://doi.org/10.3920/978-90-8686-900-8
Li, J.
, Gao, H., Madsen, P., Li, R., Liu, W., Bao, P., Xue, G., Gao, Y., Di, X.
& Su, G. (2020).
Impact of the Order of Legendre Polynomials in Random Regression Model on Genetic Evaluation for Milk Yield in Dairy Cattle Population.
Frontiers in Genetics,
11, Artikel 586155.
https://doi.org/10.3389/fgene.2020.586155
Malinowska, M., Nagy, I., Wagemaker, C. A. M.
, Ruud, A. K., Svane, S. F., Thorup-Kristensen, K., Jensen, C. S., Eriksen, B., Krusell, L., Jahoor, A., Jensen, J., Eriksen, L. B.
& Asp, T. (2020).
The cytosine methylation landscape of spring barley revealed by a new reduced representation bisulfite sequencing pipeline, WellMeth.
The Plant Genome,
13(3), e20049. Artikel e20049.
https://doi.org/10.1002/tpg2.20049
Guo, X., Sarup, P. M., Jensen, J. D., Jihad, O., Kristensen, N. H.
, Mulder, F. A. A., Jahoor, A.
& Jensen, J. (2020).
Genetic Variance of Metabolomic Features and Their Relationship With Malting Quality Traits in Spring Barley.
Frontiers in Plant Science,
11, Artikel 575467.
https://doi.org/10.3389/fpls.2020.575467
Poulsen, B. G., Ask, B.
, Nielsen, H. M., Ostersen, T.
& Christensen, O. F. (2020).
Prediction of genetic merit for growth rate in pigs using animal models with indirect genetic effects and genomic information.
Genetics, selection, evolution : GSE,
52(1), Artikel 58.
https://doi.org/10.1186/s12711-020-00578-y
Eydivandi, S., Sahana, G., Momen, M., Moradi, M. H.
& Schönherz, A. A. (2020).
Genetic diversity in Iranian indigenous sheep vis-à-vis selected exogenous sheep breeds and wild mouflon.
Animal Genetics,
51(5), 772-787.
https://doi.org/10.1111/age.12985
Esfandyari, H., Fè, D., Tessema, B. B., Janss, L. L. & Jensen, J. (2020).
Effects of different strategies for exploiting genomic selection in perennial ryegrass breeding programs.
G3: Genes, Genomes, Genetics,
10(10), 3783-3795.
https://doi.org/10.1534/g3.120.401382
Dettmann, F., Warner, D.
, Buitenhuis, B., Kargo, M., Kjeldsen, A. M. H., Nielsen, N. H., Lefebvre, D. M. & Santschi, D. E. (2020).
Fatty Acid Profiles from Routine Milk Recording as a Decision Tool for Body Weight Change of Dairy Cows after Calving.
Animals,
10(11), 1-14. Artikel 1958.
https://doi.org/10.3390/ani10111958
Forte, F. P., Schmid, J., Dijkwel, P. P.
, Nagy, I., Hume, D. E., Johnson, R. D., Simpson, W. R., Monk, S. M., Zhang, N., Sehrish, T.
& Asp, T. (2020).
Fungal Endophyte Colonization Patterns Alter Over Time in the Novel Association Between Lolium perenne and Epichloë Endophyte AR37.
Frontiers in Plant Science,
11, Artikel 570026.
https://doi.org/10.3389/fpls.2020.570026
Manzanilla-Pech, C. I. V., Gordo, D., Difford, G. F., Løvendahl, P. & Lassen, J. (2020).
Multitrait genomic prediction of methane emissions in Danish Holstein cattle.
Journal of Dairy Science,
103(10), 9195-9206.
https://doi.org/10.3168/jds.2019-17857
Madsen, M. D., Villumsen, T. M., Hansen, B. K.
, Møller, S. H., Jensen, J. & Shirali, M. (2020).
Combined analysis of group recorded feed intake and individually recorded body weight and litter size in mink.
Animal : an international journal of animal bioscience,
14(9), 1793-1801.
https://doi.org/10.1017/S1751731120000762
Skovbjerg, C. K., Knudsen, J. N., Füchtbauer, W.
, Stougaard, J., Stoddard, F. L.
, Janss, L. & Andersen, S. U. (2020).
Evaluation of yield, yield stability, and yield–protein relationship in 17 commercial faba bean cultivars.
Legume Science,
2(3), Artikel e39.
https://doi.org/10.1002/leg3.39
Su, G., Sørensen, A. C., Chu, T. T., Meier, K., Nielsen, T.
& Lund, M. S. (2020).
Impact of phenotypic information and composition of reference population on genomic prediction in fish under the presence of genotype by environment interaction.
Aquaculture,
526, Artikel 735358.
https://doi.org/10.1016/j.aquaculture.2020.735358
Gebreyesus, G., Sahana, G., Christian Sørensen, A., Lund, M. S. & Su, G. (2020).
Novel approach to incorporate information about recessive lethal genes increases the accuracy of genomic prediction for mortality traits.
Heredity,
125, 155-166.
https://doi.org/10.1038/s41437-020-0329-5
Chu, T. T., Sørensen, A. C., Lund, M. S., Meier, K., Nielsen, T. & Su, G. (2020).
Phenotypically Selective Genotyping Realizes More Genetic Gains in a Rainbow Trout Breeding Program in the Presence of Genotype-by-Environment Interactions.
Frontiers in Genetics,
11, Artikel 866.
https://doi.org/10.3389/fgene.2020.00866
Tausen, M., Clausen, M. M., Moeskjær, S., Shihavuddin, ASM., Dahl, A. B.
, Janss, L. & Andersen, S. U. (2020).
Greenotyper: Image-based plant phenotyping using distributed computing and deep learning.
Frontiers in Plant Science,
11, Artikel 1181.
https://doi.org/10.3389/fpls.2020.01181
Zhang, Q., Difford, G., Sahana, G., Løvendahl, P., Lassen, J., Lund, M. S., Guldbrandtsen, B. & Janss, L. (2020).
Bayesian modeling reveals host genetics associated with rumen microbiota jointly influence methane emission in dairy cows.
The ISME Journal,
14(8), 2019-2033.
https://doi.org/10.1038/s41396-020-0663-x
Gan, Q. F., Li, Y. R., Liu, Q. H.
, Lund, M., Su, G. S. & Liang, X. W. (2020).
Genome-wide association studies for the concentrations of insulin, triiodothyronine, and thyroxine in Chinese Holstein cattle.
Tropical Animal Health and Production,
52(4), 1655-1660.
https://doi.org/10.1007/s11250-019-02170-z
Cai, Z., Sarup, P., Ostersen, T.
, Nielsen, B., Fredholm, M., Karlskov-Mortensen, P.
, Sørensen, P., Jensen, J., Guldbrandtsen, B., Lund, M. S., Christensen, O. F. & Sahana, G. (2020).
Genomic diversity revealed by whole-genome sequencing in three Danish commercial pig breeds.
Journal of Animal Science,
98(7), Artikel 229.
https://doi.org/10.1093/jas/skaa229
Guo, X., Svane, S. F., Füchtbauer, W. S., Andersen, J. R.
, Jensen, J. & Thorup-Kristensen, K. (2020).
Genomic prediction of yield and root development in wheat under changing water availability.
Plant Methods,
16, Artikel 90.
https://doi.org/10.1186/s13007-020-00634-0
Slagboom, M., Hjortø, L., Sørensen, A. C., Mulder, H. A.
, Thomasen, J. R. & Kargo, M. (2020).
Possibilities for a specific breeding program for organic dairy production.
Journal of Dairy Science,
103(7), 6332-6345.
https://doi.org/10.3168/jds.2019-16900
Wang, L., Janss, L. L., Madsen, P., Henshall, J., Huang, C.-H., Marois, D.
, Alemu, S., Sørensen, A. C. & Jensen, J. (2020).
Effect of genomic selection and genotyping strategy on estimation of variance components in animal models using different relationship matrices.
Genetics, selection, evolution : GSE,
52(1), Artikel 31.
https://doi.org/10.1186/s12711-020-00550-w
Kamal, N.
, Mun, T., Reid, D., Lin, J.-S., Akyol, T. Y., Sandal, N., Asp, T., Hirakawa, H.
, Stougaard, J., Mayer, K. F. X., Sato, S.
& Andersen, S. U. (2020).
Insights into the evolution of symbiosis gene copy number and distribution from a chromosome-scale Lotus japonicus Gifu genome sequence.
D N A Research,
27(3), Artikel dsaa015.
https://doi.org/10.1093/dnares/dsaa015
Larsen, F., Guldbrandtsen, B., Christensen, D., Pitcovski, J.
, Kjærup, R. B. & Dalgaard, T. S. (2020).
Pustulan activates chicken bone marrow-derived dendritic cells in vitro and promotes ex vivo CD4+ T cell recall response to infectious bronchitis virus.
Vaccines,
8(2), Artikel 226.
https://doi.org/10.3390/vaccines8020226
Cagnano, G., Vázquez-De-Aldana, B. R.
, Asp, T., Roulund, N., Jensen, C. S. & Soto-Barajas, M. C. (2020).
Determination of loline alkaloids and mycelial biomass in endophyte-infected schedonorus pratensis by near-infrared spectroscopy and chemometrics.
Microorganisms,
8(5), Artikel 776.
https://doi.org/10.3390/microorganisms8050776
Wu, X., Mesbah-Uddin, M., Guldbrandtsen, B., Lund, M. S. & Sahana, G. (2020).
Novel haplotypes responsible for prenatal death in Nordic Red and Danish Jersey cattle.
Journal of Dairy Science,
103(5), 4570-4578.
https://doi.org/10.3168/jds.2019-17831
Gebreyesus, G., Difford, G. F., Buitenhuis, B., Lassen, J., Noel, S. J., Højberg, O., Plichta, D. R.
, Zhu, Z., Poulsen, N. A., Sundekilde, U. K., Løvendahl, P. & Sahana, G. (2020).
Predictive ability of host genetics and rumen microbiome for subclinical ketosis.
Journal of Dairy Science,
103(5), 4557-4569.
https://doi.org/10.3168/jds.2019-17824
Tsai, H.-Y.
, Cericola, F., Edriss, V., Andersen, J. R., Orabi, J.
, Jensen, J. D., Jahoor, A.
, Janss, L. & Jensen, J. (2020).
Use of multiple traits genomic prediction, genotype by environment interactions and spatial effect to improve prediction accuracy in yield data.
PLOS ONE,
15(5), Artikel e0232665.
https://doi.org/10.1371/journal.pone.0232665
Cai, Z., Dusza, M.
, Guldbrandtsen, B., Lund, M. S. & Sahana, G. (2020).
Distinguishing pleiotropy from linked QTL between milk production traits and mastitis resistance in Nordic Holstein cattle.
Genetics, selection, evolution : GSE,
52(1), Artikel 19.
https://doi.org/10.1186/s12711-020-00538-6
Ba, H., Qin, T.
, Cai, Z., Liu, W. & Li, C. (2020).
Molecular evidence for adaptive evolution of olfactory-related genes in cervids.
Genes and Genomics,
42(4), 355-360.
https://doi.org/10.1007/s13258-019-00911-w
Zaalberg, R. M., Buitenhuis, A. J., Sundekilde, U. K., Poulsen, N. A. & Bovenhuis, H. (2020).
Genetic analysis of orotic acid predicted with Fourier transform infrared milk spectra.
Journal of Dairy Science,
103(4), 3334-3348.
https://doi.org/10.3168/jds.2018-16057
Cao, L., Liu, H., Mulder, H. A., Henryon, M.
, Thomasen, J. R., Kargo, M. & Sørensen, A. C. (2020).
Genomic Breeding Programs Realize Larger Benefits by Cooperation in the Presence of Genotype × Environment Interaction Than Conventional Breeding Programs.
Frontiers in Genetics,
11, Artikel 251.
https://doi.org/10.3389/fgene.2020.00251
Gautason, E., Schonherz, A. A., Sahana, G. & Guldbrandtsen, B. (2020).
Relationship of Icelandic cattle with Northern and Western European cattle breeds, admixture and population structure.
Acta Agriculturae Scandinavica, Section A - Animal Science,
69(1-2), 25-38.
https://doi.org/10.1080/09064702.2019.1699951
Hutchings, N., Lærke, P. E., Munkholm, L. J., Elsgaard, L., Kristensen, T., Rasmussen, J., Lund, P., Børsting, C. F., Løvendahl, P., Mikkelsen, M. H., Albrektsen, R., Gyldenkærne, S., Møller, H. B., Hansen, M. J., Feilberg, A. & Adamsen, A. P. S., (2020).
Opdatering af effekter og potentialer af klimavirkemidler til anvendelse i landbrug, Nr. 2019-0035910, 23 s., mar. 02, 2020.
Chu, T. T., Madsen, P., Norberg, E., Wang, L., Marois, D., Henshall, J.
& Jensen, J. (2020).
Genetic analysis on body weight at different ages in broiler chicken raised in commercial environment.
Journal of Animal Breeding and Genetics (Online),
137(2), 245-259.
https://doi.org/10.1111/jbg.12448
Ask, B.
, Christensen, O. F., Heidaritabar, M., Madsen, P. & Nielsen, H. M. (2020).
The predictive ability of indirect genetic models is reduced when culled animals are omitted from the data.
Genetics, selection, evolution : GSE,
52(1), Artikel 8.
https://doi.org/10.1186/s12711-020-0527-x
Liu, A., Lund, M. S., Boichard, D. A.
, Karaman, E., Fritz, S., Aamand, G. P., Nielsen, U. S., Wang, Y.
& Su, G. (2020).
Improvement of genomic prediction by integrating additional single nucleotide polymorphisms selected from imputed whole genome sequencing data.
Heredity,
124(1), 37-49.
https://doi.org/10.1038/s41437-019-0246-7
Hozé, C., Escouflaire, C.
, Mesbah-Uddin, M., Barbat, A., Boussaha, M., Deloche, M.-C., Boichard, D., Fritz, S. & Capitan, A. (2020).
Short communication: A splice site mutation in CENPU is associated with recessive embryonic lethality in Holstein cattle.
Journal of Dairy Science,
103(1), 607-612.
https://doi.org/10.3168/jds.2019-17056
Islam, M. S., Jensen, J., Løvendahl, P., Karlskov-Mortensen, P.
& Shirali, M. (2020).
Bayesian estimation of genetic variance and response to selection on linear or ratio traits of feed efficiency in dairy cattle.
Journal of Dairy Science,
103(10), 9150-9166.
https://doi.org/10.3168/jds.2019-17137
Macedo, F. L.
, Christensen, O. F., Astruc, J.-M., Aguilar, I., Masuda, Y. & Legarra, A. (2020).
Bias and accuracy of dairy sheep evaluations using BLUP and SSGBLUP with metafounders and unknown parent groups.
Genetics, selection, evolution : GSE,
52(1), Artikel 47.
https://doi.org/10.1186/s12711-020-00567-1
Difford, G. F., Løvendahl, P., Veerkamp, R. F., Bovenhuis, H., Visker, M. H. P. W., Lassen, J. & de Haas, Y. (2020).
Can greenhouse gases in breath be used to genetically improve feed efficiency of dairy cows? Journal of Dairy Science,
103(3), 2442-2459.
https://doi.org/10.3168/jds.2019-16966
Wang, X., Su, G., Hao, D., Lund, M. S. & Kadarmideen, H. N. (2020).
Comparisons of improved genomic predictions generated by different imputation methods for genotyping by sequencing data in livestock populations.
Journal of Animal Science and Biotechnology,
11(1), Artikel 3.
https://doi.org/10.1186/s40104-019-0407-9
Cui, X., Zhang, S., Zhang, Q.
, Guo, X., Wu, C., Yao, M. & Sun, D. (2020).
Comprehensive MicroRNA Expression Profile of the Mammary Gland in Lactating Dairy Cows With Extremely Different Milk Protein and Fat Percentages.
Frontiers in Genetics,
11, Artikel 548268.
https://doi.org/10.3389/fgene.2020.548268
Christensen, O. F., Nielsen, B., Su, G., Xiang, T., Madsen, P., Ostersen, T., Velander, I. & Strathe, A. B. (2020).
Correction to: A bivariate genomic model with additive, dominance and inbreeding depression effects for sire line and three-way crossbred pigs.
Genetics, selection, evolution : GSE,
52(1), Artikel 23.
https://doi.org/10.1186/s12711-020-00541-x
Zaalberg, R. M., Bovenhuis, H.
, Poulsen, N. A., Larsen, L. B., Sehested, J. & Buitenhuis, A. J. (2020).
Genetic analysis on minerals predicted with Fourier transform infrared milk spectra for two Danish dairy cattle breeds. Abstract fra 71st Annual Meeting of European Federation of Animal Science.
https://www.wageningenacademic.com/doi/book/10.3920/978-90-8686-900-8
Tsai, H.-Y.
, Janss, L. L., Andersen, J. R., Orabi, J., Jensen, J. D., Jahoor, A.
& Jensen, J. (2020).
Genomic prediction and GWAS of yield, quality and disease-related traits in spring barley and winter wheat.
Scientific Reports,
10(1), Artikel 3347.
https://doi.org/10.1038/s41598-020-60203-2
Ankamah-Yeboah, T.
, Janss, L. L., Jensen, J. D., Hjortshøj, R. L. & Rasmussen, S. K. (2020).
Genomic Selection Using Pedigree and Marker-by-Environment Interaction for Barley Seed Quality Traits From Two Commercial Breeding Programs.
Frontiers in Plant Science,
11, Artikel 539.
https://doi.org/10.3389/fpls.2020.00539
Liu, T., Luo, C., Ma, J., Wang, Y., Shu, D.
, Su, G. & Qu, H. (2020).
High-Throughput Sequencing With the Preselection of Markers Is a Good Alternative to SNP Chips for Genomic Prediction in Broilers.
Frontiers in Genetics,
11, Artikel 108.
https://doi.org/10.3389/fgene.2020.00108
Bordbar, F.
, Jensen, J., Du, M., Abied, A., Guo, W., Xu, L., Gao, H., Zhang, L. & Li, J. (2020).
Identification and validation of a novel candidate gene regulating net meat weight in Simmental beef cattle based on imputed next-generation sequencing.
Cell Proliferation,
53(9), Artikel e12870.
https://doi.org/10.1111/cpr.12870
Schonherz, A. A., Bødker, J. S., Schmitz, A., Brøndum, R. F., Jakobsen, L. H.
, Roug, A. S., Severinsen, M. T., El-Galaly, T. C., Jensen, P., Johnsen, H. E.
, Bøgsted, M. & Dybkær, K. (2020).
Normal myeloid progenitor cell subsetassociated gene signatures for acute myeloid leukaemia subtyping with prognostic impact.
PLOS ONE,
15(4), Artikel e0229593.
https://doi.org/10.1371/journal.pone.0229593
Mesbah-Uddin, M., Guldbrandtsen, B., Capitan, A.
, Lund, M. S., Boichard, D.
& Sahana, G. (2020).
Strategy to imputation of large genomic deletions and utilizing them in mapping and genomic prediction in cattle. Abstract fra 6th International Conference of Quantitative Genetics, Brisbane, Australien.
https://icqg6.org/wp-content/uploads/2020/11/ICQG6_2020_Abstract_Book.pdf
Zhang, Y., Ran, Y.
, Nagy, I., Lenk, I., Qiu, J. L.
, Asp, T., Jensen, C. S. & Gao, C. (2020).
Targeted mutagenesis in ryegrass (Lolium spp.) using the CRISPR/Cas9 system.
Plant Biotechnology Journal,
18(9), 1854-1856.
https://doi.org/10.1111/pbi.13359
Sarup, P.
, Guo, X., Nielsen, N., Jensen, J. D., Mulder, F., Jihad, O., Edriss, V., Jahoor, A.
& Jensen, J. (2020).
Using NMR metabolomics in breeding for malt quality in spring barley. Abstract fra International Symposium of the Society for Plant Breeding (GPZ), Tulln, Østrig.
https://gpz2020.boku.ac.at/wp-content/uploads/2020/03/06_Sarup.pdf
Liu, A., Lund, M. S., Boichard, D.
, Karaman, E., Guldbrandtsen, B., Fritz, S., Aamand, G. P., Nielsen, U. S.
, Sahana, G., Wang, Y.
& Su, G. (2020).
Weighted single-step genomic best linear unbiased prediction integrating variants selected from sequencing data by association and bioinformatics analyses.
Genetics Selection Evolution,
52(1), Artikel 48.
https://doi.org/10.1186/s12711-020-00568-0
Gao, H., Madsen, P., Aamand, G. P.
, Thomasen, J. R., Sørensen, A. C. & Jensen, J. (2019).
Bias in estimates of variance components in populations undergoing genomic selection: a simulation study.
BMC Genomics,
20(1), Artikel 956.
https://doi.org/10.1186/s12864-019-6323-8
Mebratie, W., Reyer, H., Wimmers, K.
, Bovenhuis, H. & Jensen, J. (2019).
Genome wide association study of body weight and feed efficiency traits in a commercial broiler chicken population, a re-visitation.
Scientific Reports,
9, Artikel 922.
https://doi.org/10.1038/s41598-018-37216-z
Malik, P. L.
, Janss, L., Nielsen, L. K., Borum, F., Jørgensen, H., Eriksen, B., Schjoerring, J. K. & Rasmussen, S. K. (2019).
Breeding for dual-purpose wheat varieties using marker–trait associations for biomass yield and quality traits.
Theoretical and Applied Genetics,
132(12), 3375-3398.
https://doi.org/10.1007/s00122-019-03431-z
Gebreyesus, G., Buitenhuis, A. J., Poulsen, N. A., Visker, M. H. P. W., Zhang, Q., van Valenberg, H. J. F., Sun, D. & Bovenhuis, H. (2019).
Combining multi-population datasets for joint genome-wide association and meta-analyses: The case of bovine milk fat composition traits.
Journal of Dairy Science,
102(12), 11124-11141.
https://doi.org/10.3168/jds.2019-16676
Gan, Q. F., Li, Y. R.
, Lund, M., Su, G. S. & Liang, X. W. (2019).
Genome-wide association study identifies loci linked to serum electrolyte traits in Chinese Holstein cattle.
Animal Genetics,
50(6), 744-748.
https://doi.org/10.1111/age.12851
Wu, X., Mesbah-Uddin, M., Guldbrandtsen, B., Lund, M. S. & Sahana, G. (2019).
Haplotypes responsible for early embryonic lethality detected in Nordic Holsteins.
Journal of Dairy Science,
102(12), 11116-11123.
https://doi.org/10.3168/jds.2019-16651
Mesbah-Uddin, M., Guldbrandtsen, B., Lund, M. S., Boichard, D.
& Sahana, G. (2019).
Joint imputation of whole-genome sequence variants and large chromosomal deletions in cattle.
Journal of Dairy Science,
102(12), 11193-11206.
https://doi.org/10.3168/jds.2019-16946
Alexandre, P., Porto-Neto, L.
, Karaman, E., Lehnert, S. & Reverter, A. (2019).
Pooled genotyping strategies for the rapid construction of genomic reference populations.
Journal of Animal Science,
97(12), 4761– 4769.
https://doi.org/10.1093/jas/skz344
Chu, T. T., Bastiaansen, J. W. M.
, Berg, P., Romé, H., Marois, D., Henshall, J.
& Jensen, J. (2019).
Correction to: Use of genomic information to exploit genotype-by-environment interactions for body weight of broiler chicken in bio-secure and production environments.
Genetics Selection Evolution,
51(1), Artikel 68.
https://doi.org/10.1186/s12711-019-0513-3
Olijhoek, D., Hellwing, A. L. F., Grevsen, K., Haveman, L., Chowdhury, M. R., Løvendahl, P., Weisbjerg, M. R., Noel, S. J., Hojberg, O., Wiking, L. & Lund, P. (2019).
Effect of dried oregano (Origanum vulgare L.) plant material in feed on methane production, rumen fermentation, nutrient digestibility, and milk fatty acid composition in dairy cows.
Journal of Dairy Science,
102(11), 9902–9918.
https://doi.org/10.3168/jds.2019-16329
Rohde, P. D., Jensen, I. R.
, Sarup, P. M., Ørsted, M.
, Demontis, D., Sørensen, P. & Kristensen, T. N. (2019).
Genetic Signatures of Drug Response Variability in Drosophila melanogaster.
Genetics (Print),
213(2), 633-650.
https://doi.org/10.1534/genetics.119.302381
Bordbar, F.
, Jensen, J., Zhu, B., Wang, Z., Xu, L., Chang, T., Xu, L., Du, M., Zhang, L., Gao, H., Xu, L. & Li, J. (2019).
Identification of muscle-specific candidate genes in Simmental beef cattle using imputed next generation sequencing.
PLOS ONE,
14(10), Artikel e0223671.
https://doi.org/10.1371/journal.pone.0223671
Aliakbari, A., Ehsani, A., Vaez Torshizi, R.
, Løvendahl, P., Esfandyari, H., Jensen, J. & Sarup, P. (2019).
Genetic variance of metabolomic features and their relationship with body weight and body weight gain in Holstein cattle.
Journal of Animal Science,
97(9), 3832-3844.
https://doi.org/10.1093/jas/skz228