Ahmad, S., Drag, M. H., Salleh, S. M.
, Cai, Z. & Nielsen, M. O. (2021).
Transcriptomics analysis of differentially expressed genes in subcutaneous and perirenal adipose tissue of sheep as affected by their pre- and early postnatal malnutrition histories.
BMC Genomics,
22(1), Article 338.
https://doi.org/10.1186/s12864-021-07672-5
Afiani, F. A., Joezy-Shekalgorabi, S., Amin-Afshar, M., Sadeghi, A.-A.
& Jensen, J. (2021).
Additive genetic and permanent environmental correlation between different parts of lactation in moderate and cold regions.
Czech Journal of Animal Science,
66(4), 112-121.
https://doi.org/10.17221/254/2020-CJAS
Hutchings, N., Lærke, P. E., Munkholm, L. J., Elsgaard, L., Kristensen, T., Rasmussen, J., Lund, P., Børsting, C. F., Løvendahl, P., Mikkelsen, M. H., Albrektsen, R., Gyldenkærne, S., Møller, H. B., Hansen, M. J., Feilberg, A. & Adamsen, A. P. S., (2020).
Opdatering af effekter og potentialer af klimavirkemidler til anvendelse i landbrug, No. 2019-0035910, 23 p., Mar 02, 2020.
Zaalberg, R. M., Bovenhuis, H.
, Poulsen, N. A., Larsen, L. B., Sehested, J. & Buitenhuis, A. J. (2020).
Genetic analysis on minerals predicted with Fourier transform infrared milk spectra for two Danish dairy cattle breeds. Abstract from 71st Annual Meeting of European Federation of Animal Science.
https://www.wageningenacademic.com/doi/book/10.3920/978-90-8686-900-8
Sarup, P.
, Guo, X., Nielsen, N., Jensen, J. D., Mulder, F., Jihad, O., Edriss, V., Jahoor, A.
& Jensen, J. (2020).
Using NMR metabolomics in breeding for malt quality in spring barley. Abstract from International Symposium of the Society for Plant Breeding (GPZ), Tulln, Austria.
https://gpz2020.boku.ac.at/wp-content/uploads/2020/03/06_Sarup.pdf
Mesbah-Uddin, M., Guldbrandtsen, B., Capitan, A.
, Lund, M. S., Boichard, D.
& Sahana, G. (2020).
Strategy to imputation of large genomic deletions and utilizing them in mapping and genomic prediction in cattle. Abstract from 6th International Conference of Quantitative Genetics, Brisbane, Australia.
https://icqg6.org/wp-content/uploads/2020/11/ICQG6_2020_Abstract_Book.pdf
Vestergaard, M., Spleth, P., Stephansen, R.
, Kargo, M., Ettema, J. F. & Fogh, A. (2020).
Utilizing beef x dairy crossbreds for beef production – Danish experiences. In
Book of Abstracts of the 71st Annual Meeting of the European Federation of Animal Science (Vol. 26, pp. 317). Wageningen Academic Publishers.
https://doi.org/10.3920/978-90-8686-900-8
Christensen, O. F., Nielsen, B., Su, G., Xiang, T., Madsen, P., Ostersen, T., Velander, I. & Strathe, A. B. (2020).
Correction to: A bivariate genomic model with additive, dominance and inbreeding depression effects for sire line and three-way crossbred pigs.
Genetics, selection, evolution : GSE,
52(1), Article 23.
https://doi.org/10.1186/s12711-020-00541-x
Zhang, Y., Ran, Y.
, Nagy, I., Lenk, I., Qiu, J. L.
, Asp, T., Jensen, C. S. & Gao, C. (2020).
Targeted mutagenesis in ryegrass (Lolium spp.) using the CRISPR/Cas9 system.
Plant Biotechnology Journal,
18(9), 1854-1856.
https://doi.org/10.1111/pbi.13359
Zhang, Q., Difford, G., Sahana, G., Løvendahl, P., Lassen, J., Lund, M. S., Guldbrandtsen, B. & Janss, L. (2020).
Bayesian modeling reveals host genetics associated with rumen microbiota jointly influence methane emission in dairy cows.
The ISME Journal,
14(8), 2019-2033.
https://doi.org/10.1038/s41396-020-0663-x
Zhang, Q., Cai, Z., Lhomme, M.
, Sahana, G., Lesnik, P., Guerin, M., Fredholm, M. & Karlskov-Mortensen, P. (2020).
Inclusion of endophenotypes in a standard GWAS facilitate a detailed mechanistic understanding of genetic elements that control blood lipid levels.
Scientific Reports,
10(1), Article 18434.
https://doi.org/10.1038/s41598-020-75612-6
Zaalberg, R. M., Buitenhuis, A. J., Sundekilde, U. K., Poulsen, N. A. & Bovenhuis, H. (2020).
Genetic analysis of orotic acid predicted with Fourier transform infrared milk spectra.
Journal of Dairy Science,
103(4), 3334-3348.
https://doi.org/10.3168/jds.2018-16057
Wu, X., Mesbah-Uddin, M., Guldbrandtsen, B., Lund, M. S. & Sahana, G. (2020).
Novel haplotypes responsible for prenatal death in Nordic Red and Danish Jersey cattle.
Journal of Dairy Science,
103(5), 4570-4578.
https://doi.org/10.3168/jds.2019-17831
Wang, X., Su, G., Hao, D., Lund, M. S. & Kadarmideen, H. N. (2020).
Comparisons of improved genomic predictions generated by different imputation methods for genotyping by sequencing data in livestock populations.
Journal of Animal Science and Biotechnology,
11(1), Article 3.
https://doi.org/10.1186/s40104-019-0407-9
Wang, L., Janss, L. L., Madsen, P., Henshall, J., Huang, C.-H., Marois, D.
, Alemu, S., Sørensen, A. C. & Jensen, J. (2020).
Effect of genomic selection and genotyping strategy on estimation of variance components in animal models using different relationship matrices.
Genetics, selection, evolution : GSE,
52(1), Article 31.
https://doi.org/10.1186/s12711-020-00550-w
Tsai, H.-Y.
, Janss, L. L., Andersen, J. R., Orabi, J., Jensen, J. D., Jahoor, A.
& Jensen, J. (2020).
Genomic prediction and GWAS of yield, quality and disease-related traits in spring barley and winter wheat.
Scientific Reports,
10(1), Article 3347.
https://doi.org/10.1038/s41598-020-60203-2
Tsai, H.-Y.
, Cericola, F., Edriss, V., Andersen, J. R., Orabi, J.
, Jensen, J. D., Jahoor, A.
, Janss, L. & Jensen, J. (2020).
Use of multiple traits genomic prediction, genotype by environment interactions and spatial effect to improve prediction accuracy in yield data.
PLOS ONE,
15(5), Article e0232665.
https://doi.org/10.1371/journal.pone.0232665
Tessema, B. B., Liu, H., Sørensen, A. C., Andersen, J. R.
& Jensen, J. (2020).
Strategies Using Genomic Selection to Increase Genetic Gain in Breeding Programs for Wheat.
Frontiers in Genetics,
11, Article 578123.
https://doi.org/10.3389/fgene.2020.578123
Tausen, M., Clausen, M. M., Moeskjær, S., Shihavuddin, ASM., Dahl, A. B.
, Janss, L. & Andersen, S. U. (2020).
Greenotyper: Image-based plant phenotyping using distributed computing and deep learning.
Frontiers in Plant Science,
11, Article 1181.
https://doi.org/10.3389/fpls.2020.01181
Su, G., Sørensen, A. C., Chu, T. T., Meier, K., Nielsen, T.
& Lund, M. S. (2020).
Impact of phenotypic information and composition of reference population on genomic prediction in fish under the presence of genotype by environment interaction.
Aquaculture,
526, Article 735358.
https://doi.org/10.1016/j.aquaculture.2020.735358
Slagboom, M., Hjortø, L., Sørensen, A. C., Mulder, H. A.
, Thomasen, J. R. & Kargo, M. (2020).
Possibilities for a specific breeding program for organic dairy production.
Journal of Dairy Science,
103(7), 6332-6345.
https://doi.org/10.3168/jds.2019-16900
Skovbjerg, C. K., Knudsen, J. N.
, Füchtbauer, W., Stougaard, J., Stoddard, F. L.
, Janss, L. & Andersen, S. U. (2020).
Evaluation of yield, yield stability, and yield–protein relationship in 17 commercial faba bean cultivars.
Legume Science,
2(3), Article e39.
https://doi.org/10.1002/leg3.39
Schonherz, A. A., Bødker, J. S., Schmitz, A., Brøndum, R. F., Jakobsen, L. H.
, Roug, A. S., Severinsen, M. T., El-Galaly, T. C., Jensen, P., Johnsen, H. E.
, Bøgsted, M. & Dybkær, K. (2020).
Normal myeloid progenitor cell subsetassociated gene signatures for acute myeloid leukaemia subtyping with prognostic impact.
PLOS ONE,
15(4), Article e0229593.
https://doi.org/10.1371/journal.pone.0229593
Poulsen, B. G., Ask, B.
, Nielsen, H. M., Ostersen, T.
& Christensen, O. F. (2020).
Prediction of genetic merit for growth rate in pigs using animal models with indirect genetic effects and genomic information.
Genetics, selection, evolution : GSE,
52(1), Article 58.
https://doi.org/10.1186/s12711-020-00578-y
Morgante, F., Huang, W.
, Sørensen, P., Maltecca, C. & Mackay, T. F. C. (2020).
Leveraging Multiple Layers of Data To Predict Drosophila Complex Traits.
G3 (Bethesda, Md.),
10(12), 4599-4613.
https://doi.org/10.1534/g3.120.401847
Mao, X., Sahana, G., Johansson, A. M.
, Liu, A., Ismael, A., Løvendahl, P., De Koning, D.-J.
& Guldbrandtsen, B. (2020).
Genome-wide association mapping for dominance effects in female fertility using real and simulated data from Danish Holstein cattle.
Scientific Reports,
10(1), Article 2953.
https://doi.org/10.1038/s41598-020-59788-5
Manzanilla-Pech, C. I. V., Gordo, D., Difford, G. F., Løvendahl, P. & Lassen, J. (2020).
Multitrait genomic prediction of methane emissions in Danish Holstein cattle.
Journal of Dairy Science,
103(10), 9195-9206.
https://doi.org/10.3168/jds.2019-17857
Malinowska, M., Nagy, I., Wagemaker, C. A. M.
, Ruud, A. K., Svane, S. F., Thorup-Kristensen, K., Jensen, C. S., Eriksen, B., Krusell, L., Jahoor, A., Jensen, J., Eriksen, L. B.
& Asp, T. (2020).
The cytosine methylation landscape of spring barley revealed by a new reduced representation bisulfite sequencing pipeline, WellMeth.
The Plant Genome,
13(3), e20049. Article e20049.
https://doi.org/10.1002/tpg2.20049
Madsen, M. D., Villumsen, T. M., Hansen, B. K.
, Møller, S. H., Jensen, J. & Shirali, M. (2020).
Combined analysis of group recorded feed intake and individually recorded body weight and litter size in mink.
Animal : an international journal of animal bioscience,
14(9), 1793-1801.
https://doi.org/10.1017/S1751731120000762
Macedo, F. L.
, Christensen, O. F., Astruc, J.-M., Aguilar, I., Masuda, Y. & Legarra, A. (2020).
Bias and accuracy of dairy sheep evaluations using BLUP and SSGBLUP with metafounders and unknown parent groups.
Genetics, selection, evolution : GSE,
52(1), Article 47.
https://doi.org/10.1186/s12711-020-00567-1
Liu, T., Luo, C., Ma, J., Wang, Y., Shu, D.
, Su, G. & Qu, H. (2020).
High-Throughput Sequencing With the Preselection of Markers Is a Good Alternative to SNP Chips for Genomic Prediction in Broilers.
Frontiers in Genetics,
11, Article 108.
https://doi.org/10.3389/fgene.2020.00108
Liu, A., Lund, M. S., Boichard, D., Mao, X.
, Karaman, E., Fritz, S., Aamand, G. P., Wang, Y.
& Su, G. (2020).
Imputation for sequencing variants preselected to a customized low-density chip.
Scientific Reports,
10, Article 9524.
https://doi.org/10.1038/s41598-020-66523-7
Liu, A., Lund, M. S., Boichard, D.
, Karaman, E., Guldbrandtsen, B., Fritz, S., Aamand, G. P., Nielsen, U. S.
, Sahana, G., Wang, Y.
& Su, G. (2020).
Weighted single-step genomic best linear unbiased prediction integrating variants selected from sequencing data by association and bioinformatics analyses.
Genetics Selection Evolution,
52(1), Article 48.
https://doi.org/10.1186/s12711-020-00568-0
Li, J.
, Gao, H., Madsen, P., Li, R., Liu, W., Bao, P., Xue, G., Gao, Y., Di, X.
& Su, G. (2020).
Impact of the Order of Legendre Polynomials in Random Regression Model on Genetic Evaluation for Milk Yield in Dairy Cattle Population.
Frontiers in Genetics,
11, Article 586155.
https://doi.org/10.3389/fgene.2020.586155
Larsen, F., Guldbrandtsen, B., Christensen, D., Pitcovski, J.
, Kjærup, R. B. & Dalgaard, T. S. (2020).
Pustulan activates chicken bone marrow-derived dendritic cells in vitro and promotes ex vivo CD4+ T cell recall response to infectious bronchitis virus.
Vaccines,
8(2), Article 226.
https://doi.org/10.3390/vaccines8020226
Kamal, N.
, Mun, T., Reid, D., Lin, J.-S., Akyol, T. Y., Sandal, N., Asp, T., Hirakawa, H.
, Stougaard, J., Mayer, K. F. X., Sato, S.
& Andersen, S. U. (2020).
Insights into the evolution of symbiosis gene copy number and distribution from a chromosome-scale Lotus japonicus Gifu genome sequence.
D N A Research,
27(3), Article dsaa015.
https://doi.org/10.1093/dnares/dsaa015
Islam, M. S., Jensen, J., Løvendahl, P., Karlskov-Mortensen, P.
& Shirali, M. (2020).
Bayesian estimation of genetic variance and response to selection on linear or ratio traits of feed efficiency in dairy cattle.
Journal of Dairy Science,
103(10), 9150-9166.
https://doi.org/10.3168/jds.2019-17137
Huang, A., Zhi, D., Tang, H.
, Jiang, L., Luo, S. & Zhou, Y. (2020).
Effect of Fe2+, Mn2+ catalysts on the performance of electro-Fenton degradation of antibiotic ciprofloxacin, and expanding the utilizing of acid mine drainage.
Science of the Total Environment,
720, Article 137560.
https://doi.org/10.1016/j.scitotenv.2020.137560
Hozé, C., Escouflaire, C.
, Mesbah-Uddin, M., Barbat, A., Boussaha, M., Deloche, M.-C., Boichard, D., Fritz, S. & Capitan, A. (2020).
Short communication: A splice site mutation in CENPU is associated with recessive embryonic lethality in Holstein cattle.
Journal of Dairy Science,
103(1), 607-612.
https://doi.org/10.3168/jds.2019-17056
Holmqvist, V., Roos, L. K. S.
, Kjartansdottir, K. R., Dunø, M., Petersen, M. R., Hnida, C.
, Pedersen, I. S., Ernst, A., Toft, C. L. F., Diemer, T.
, Ingerslev, H. J., Pinborg, A. & Løssl, K. (2020).
Præimplantationsgenetisk testning for aneuploidi.
Ugeskrift for Læger,
181(4), Article V12180849.
Harwood, S. L., Nielsen, N. S., Jensen, K. T., Nielsen, P. K., Thøgersen, I. B. & Enghild, J. J. (2020).
α2-macroglobulin-like protein 1 can conjugate and inhibit proteases through their hydroxyl groups, because of an enhanced reactivity of its thiol ester.
Journal of Biological Chemistry,
295(49), 16732-16742.
https://doi.org/10.1074/jbc.RA120.015694
Guo, X., Sarup, P. M., Jensen, J. D., Jihad, O., Kristensen, N. H.
, Mulder, F. A. A., Jahoor, A.
& Jensen, J. (2020).
Genetic Variance of Metabolomic Features and Their Relationship With Malting Quality Traits in Spring Barley.
Frontiers in Plant Science,
11, Article 575467.
https://doi.org/10.3389/fpls.2020.575467
Guo, X., Svane, S. F., Füchtbauer, W. S., Andersen, J. R.
, Jensen, J. & Thorup-Kristensen, K. (2020).
Genomic prediction of yield and root development in wheat under changing water availability.
Plant Methods,
16, Article 90.
https://doi.org/10.1186/s13007-020-00634-0
Gebreyesus, G., Sahana, G., Christian Sørensen, A., Lund, M. S. & Su, G. (2020).
Novel approach to incorporate information about recessive lethal genes increases the accuracy of genomic prediction for mortality traits.
Heredity,
125, 155-166.
https://doi.org/10.1038/s41437-020-0329-5
Gebreyesus, G., Difford, G. F., Buitenhuis, B., Lassen, J., Noel, S. J., Højberg, O., Plichta, D. R.
, Zhu, Z., Poulsen, N. A., Sundekilde, U. K., Løvendahl, P. & Sahana, G. (2020).
Predictive ability of host genetics and rumen microbiome for subclinical ketosis.
Journal of Dairy Science,
103(5), 4557-4569.
https://doi.org/10.3168/jds.2019-17824
Gautason, E., Schonherz, A. A., Sahana, G. & Guldbrandtsen, B. (2020).
Relationship of Icelandic cattle with Northern and Western European cattle breeds, admixture and population structure.
Acta Agriculturae Scandinavica, Section A - Animal Science,
69(1-2), 25-38.
https://doi.org/10.1080/09064702.2019.1699951
Gan, Q. F., Li, Y. R., Liu, Q. H.
, Lund, M., Su, G. S. & Liang, X. W. (2020).
Genome-wide association studies for the concentrations of insulin, triiodothyronine, and thyroxine in Chinese Holstein cattle.
Tropical Animal Health and Production,
52(4), 1655-1660.
https://doi.org/10.1007/s11250-019-02170-z
Forte, F. P., Schmid, J., Dijkwel, P. P.
, Nagy, I., Hume, D. E., Johnson, R. D., Simpson, W. R., Monk, S. M., Zhang, N., Sehrish, T.
& Asp, T. (2020).
Fungal Endophyte Colonization Patterns Alter Over Time in the Novel Association Between Lolium perenne and Epichloë Endophyte AR37.
Frontiers in Plant Science,
11, Article 570026.
https://doi.org/10.3389/fpls.2020.570026
Eydivandi, S., Sahana, G., Momen, M., Moradi, M. H.
& Schönherz, A. A. (2020).
Genetic diversity in Iranian indigenous sheep vis-à-vis selected exogenous sheep breeds and wild mouflon.
Animal Genetics,
51(5), 772-787.
https://doi.org/10.1111/age.12985
Esfandyari, H., Fè, D., Tessema, B. B., Janss, L. L. & Jensen, J. (2020).
Effects of different strategies for exploiting genomic selection in perennial ryegrass breeding programs.
G3: Genes, Genomes, Genetics,
10(10), 3783-3795.
https://doi.org/10.1534/g3.120.401382
Difford, G. F., Løvendahl, P., Veerkamp, R. F., Bovenhuis, H., Visker, M. H. P. W., Lassen, J. & de Haas, Y. (2020).
Can greenhouse gases in breath be used to genetically improve feed efficiency of dairy cows? Journal of Dairy Science,
103(3), 2442-2459.
https://doi.org/10.3168/jds.2019-16966
Dettmann, F., Warner, D.
, Buitenhuis, B., Kargo, M., Kjeldsen, A. M. H., Nielsen, N. H., Lefebvre, D. M. & Santschi, D. E. (2020).
Fatty Acid Profiles from Routine Milk Recording as a Decision Tool for Body Weight Change of Dairy Cows after Calving.
Animals,
10(11), 1-14. Article 1958.
https://doi.org/10.3390/ani10111958
Cui, X., Zhang, S., Zhang, Q.
, Guo, X., Wu, C., Yao, M. & Sun, D. (2020).
Comprehensive MicroRNA Expression Profile of the Mammary Gland in Lactating Dairy Cows With Extremely Different Milk Protein and Fat Percentages.
Frontiers in Genetics,
11, Article 548268.
https://doi.org/10.3389/fgene.2020.548268
Chu, T. T., Madsen, P., Norberg, E., Wang, L., Marois, D., Henshall, J.
& Jensen, J. (2020).
Genetic analysis on body weight at different ages in broiler chicken raised in commercial environment.
Journal of Animal Breeding and Genetics (Online),
137(2), 245-259.
https://doi.org/10.1111/jbg.12448
Chu, T. T., Sørensen, A. C., Lund, M. S., Meier, K., Nielsen, T. & Su, G. (2020).
Phenotypically Selective Genotyping Realizes More Genetic Gains in a Rainbow Trout Breeding Program in the Presence of Genotype-by-Environment Interactions.
Frontiers in Genetics,
11, Article 866.
https://doi.org/10.3389/fgene.2020.00866
Cao, L., Liu, H., Mulder, H. A., Henryon, M.
, Thomasen, J. R., Kargo, M. & Sørensen, A. C. (2020).
Genomic Breeding Programs Realize Larger Benefits by Cooperation in the Presence of Genotype × Environment Interaction Than Conventional Breeding Programs.
Frontiers in Genetics,
11, Article 251.
https://doi.org/10.3389/fgene.2020.00251
Cai, Z., Dusza, M.
, Guldbrandtsen, B., Lund, M. S. & Sahana, G. (2020).
Distinguishing pleiotropy from linked QTL between milk production traits and mastitis resistance in Nordic Holstein cattle.
Genetics, selection, evolution : GSE,
52(1), Article 19.
https://doi.org/10.1186/s12711-020-00538-6
Cai, Z., Sarup, P., Ostersen, T.
, Nielsen, B., Fredholm, M., Karlskov-Mortensen, P.
, Sørensen, P., Jensen, J., Guldbrandtsen, B., Lund, M. S., Christensen, O. F. & Sahana, G. (2020).
Genomic diversity revealed by whole-genome sequencing in three Danish commercial pig breeds.
Journal of Animal Science,
98(7), Article 229.
https://doi.org/10.1093/jas/skaa229
Cagnano, G., Vázquez-De-Aldana, B. R.
, Asp, T., Roulund, N., Jensen, C. S. & Soto-Barajas, M. C. (2020).
Determination of loline alkaloids and mycelial biomass in endophyte-infected schedonorus pratensis by near-infrared spectroscopy and chemometrics.
Microorganisms,
8(5), Article 776.
https://doi.org/10.3390/microorganisms8050776
Bordbar, F.
, Jensen, J., Du, M., Abied, A., Guo, W., Xu, L., Gao, H., Zhang, L. & Li, J. (2020).
Identification and validation of a novel candidate gene regulating net meat weight in Simmental beef cattle based on imputed next-generation sequencing.
Cell Proliferation,
53(9), Article e12870.
https://doi.org/10.1111/cpr.12870
Ba, H.
, Cai, Z., Gao, H., Qin, T., Liu, W., Xie, L., Zhang, Y., Jing, B., Wang, D. & Li, C. (2020).
Chromosome-level genome assembly of Tarim red deer, Cervus elaphus yarkandensis.
Scientific Data,
7(1), Article 187.
https://doi.org/10.1038/s41597-020-0537-0
Ba, H., Qin, T.
, Cai, Z., Liu, W. & Li, C. (2020).
Molecular evidence for adaptive evolution of olfactory-related genes in cervids.
Genes and Genomics,
42(4), 355-360.
https://doi.org/10.1007/s13258-019-00911-w
Ask, B.
, Christensen, O. F., Heidaritabar, M., Madsen, P. & Nielsen, H. M. (2020).
The predictive ability of indirect genetic models is reduced when culled animals are omitted from the data.
Genetics, selection, evolution : GSE,
52(1), Article 8.
https://doi.org/10.1186/s12711-020-0527-x
Ankamah-Yeboah, T.
, Janss, L. L., Jensen, J. D., Hjortshøj, R. L. & Rasmussen, S. K. (2020).
Genomic Selection Using Pedigree and Marker-by-Environment Interaction for Barley Seed Quality Traits From Two Commercial Breeding Programs.
Frontiers in Plant Science,
11, Article 539.
https://doi.org/10.3389/fpls.2020.00539
Nielsen, L. V., Nielsen, B.
, Christensen, O. F., Turner, S. P.
, Nielsen, H. M. & Ask, B. (2019).
Selection of pigs for social genetic effects improves growth in crossbreeds. Paper presented at Abstract from 70th Annual Meeting of the European Federation of Animal Science EAAP 2019, Ghent, Belgium, Ghent, Belgium.
Vargas-Beloo-Pérez, E., Dhakal, R.
, Kargo, M., Buitenhuis, A. J. & Poulsen, N. A. (2019).
Effect of feeding managements on the milk concentrations of short- and medium-chain fatty acids. Abstract from 70th Annual Meeting of the European Federation of Animal Science (EAAP), Ghent, Belgium.
Slagboom, M., Hjortø, L., Sørensen, A. C., Mulder, H. A.
, Thomasen, J. R. & Kargo, M. (2019).
Possibilities for a specific breeding program for organic dairy production. 215-215. Abstract from 70th Annual Meeting of the European Federation of Animal Science EAAP 2019, Ghent, Belgium, Ghent, Belgium.
Schmidtmann, C.
, Kargo, M., Ettema, J. F., Hinrichs, D. & Thaller, G. (2019).
Derivation of economic values for German dairy breeds. 609-609. Abstract from 70th Annual Meeting of the European Federation of Animal Science EAAP 2019, Ghent, Belgium, Ghent, Belgium.
Ruud, A. K., Malinowska, M., Bjarup Hansen, P., Svane, S. F., Eriksen, L. B., Fè, D., Jensen, C. S., Greve, M., Thorup-Kristensen, K.
, Nagy, I. & Asp, T. (2019).
Differential gene expression and multi-omic analysis of drought stress in Lolium perenne. 287. Abstract from EGF-EUCARPIA Symposium, Grassland Science in Europe, Zurich, Switzerland.
https://www.europeangrassland.org/fileadmin/documents/Infos/Printed_Matter/Proceedings/EGF2019.pdf