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SUMMARY
A REML. algorithm based on first and second derivatives for the general multivariate case were derived.
The algorithm, is named AI-REML, and it the average of observed and expected information as the information
matrix, In test runs, the AI-REML algorithm gave almost identical parameter estimates as DF-REML, but with
a considerable reduction in computer time.

INTRODUCTION

Derivative-free multivariate REML algorithms are computationally expensive, especially if the likelihood
function contains many parameters to be estimated. For example Misztal (1993) showed that as the number of
traits increases the derivative-free methods become less efficient than methods using first derivatives, i.e.
procedures based on the EM-algorithm. One round of a derivative-free method involves computing the determinant
of the coefficient matrix of the mixed model equations. In the EM-algorithm, elements in the sparse inverse of
this matrix are needed. However, Misztal & Perez-Enciso (1993) have shown that these elements can be computed
in about three times the computer time needed to compute the determinant of the coefficient matrix.

The poor numerical properties of the derivative-free methods in multivariate mixed models have spurred new
interest in the development of algorithms utilizing first and maybe second derivatives of the likelihood function.

The matrix of second derivatives is called the observed information matrix. Expectations of this matrix is
the Fisher information matrix. REML algorithms utilizing observed or expected information will lead to either
the Newton-Raphson or the Fisher-scoring algorithm, respectively. Both the observed and the expected information
matrices involve terms that are difficult to compute. Using univariate models, Johnson and Thompson (1994)
noted that the average of observed and expected information is considerably easier to compute than either of the
components due to cancellation of terms. This leads to an algorithm calied AI-FREML which is a compromise
between the Newton-Raphson and the Fisher scoring algorithms.

The purpose of this paper is to extend the method of Johnson and Thompson (1994) to the general multiple
trait model with several random effects and to compare it with existing procedures based on the derivative-free

approach.

METHODS
Assuming multivariate normality the restricted log-likelihood can, following Harville (1977), be written as:
L(@®)=-2nl=const+ In |V |+In[X V!X |+y Py [1]

where: y denote the vector of observation, V = Var[y], X is the design matrix corresponding to the fixed effects,
and P = v-l - V-l X (xl v-l X)-l Xt v-l.
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The first and second derivatives of [1] with respect to elements of 8 can be written as (e.g. Harville,1977):

dL(8) _+r [V p , oV [2]
. -y P Py
0 Oy, G Y
2L (0) _ tr oV P v pl+2y P oV p oV P 3]
= - Y
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The matrix obtained by evaluating expression [3] for all j and j' is the observed information matrix. Taking
expectations one obtains the Fisher information matrix, with typical element:

?L(0) ]_ v v
E = - tr P P
{4 {j')] [a B(j} 0 B(j')

Computation of both {3] or [4] might in many practical applications be prohibitively tedious. However taking
average of [3] and [4] as an expression of information, we obtain an average information matrix I, () with
typical element:

4]

Il(e)(j;j’) =

32L.(9) 2L (8) N . v v 5
E +E =y P P P (5]
( 4 5% ) Y’ d B{j) a H(j') b

Define a matrix F with dimension no of observations x no. of elements in 6, with the j°th column £; equal

1o the vector 'ai;‘ P'y, let W be the total design matrix, C* the inverse of the coefficient matrix of the
- 5

mixed model equations (MME), and R the residual (co)variance matrix, then:
LLE®=FPF=FR'F-(C'WR'F W R'F [6]

Therefore, once F is known the average information can be computed by solving the MME one time for
each parameter in 6, with y replaced by the cormresponding column of F.

For a column in F corresponding to an element in G, ,where G, is a p; X p; (co)variance matrix among

the traits in the i’th random effect, it can be shown that (Madsen et. al 1994):

£ (8y4,0) = H%JP Y =%, [( D, 6 ) ® 1] 1, g

where D, is a symmetric p; X p; indicator matrix containing ones in positions corresponding to the j, k’th
parameter in G, and zero’s elsewhere, 8,; y, is the comresponding element in 6, and @, is the vector of all

solutions for the i’th random effect. If j = k, D, contains only 2 one on the j’th diagonal all other elements being
2er0.
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For the evaluation of columns in F corresponding to parameters in R, we need:

£ (eR(j,k)) = {3‘96%;] Py= Rngy = Rij-l(Y - xs - Zﬁ) [8]

If j = k the elements in f (B ;; ;) is the weighted residuals for the j°th trait with all other elements zero. If
j= k, the weighted residuals for both traits are used, with all other positions equal to zero. The effect of R; is
to interchange the weighted residuals for each trait. In practice f; are not computed, in stead elements of WR'F
are accumulated directly during one pass through data.

In order 1o compute first derivatives of the log-likelihood, the terms in [2] must be evaluated. Consider the
derivatives with respect to a (co)variance parameter in the i’th random effect it can be shown that (Madsen et.
al, 1994):

©

AL (e - . -
_57(;‘,;)‘ =q, G;* - G5} [T + 8] &}

where g, is the number of levels for the i’th random effect, T and S are matrices with elements
=tr [A; B Cf{’“"] ,ands, = G, AL 1 @/ respectively, and where A, is the covariance structure for the i’th

random effect, C;*™ is a submatrix of C* and ﬁy is the solution vector for the j’ trait in the i’th random factor.

The first derivatives with respect 1o residual [co]variances can be computed as (Madsen et al, 1994):
_?;{(z) =tr[Ry P]-y PR Py=1tfR; R'] - 4[C' WR' R, R'W]=¢& R'R,R'& [10]
whereé=y-Xp-Z i

Note that W' R R; R W has exactly the same structure as C = W'RW, but with R replaced by
R R; R™. Therefore, if a sparse fnverse of C is available [9] and [10] can be computed together with [8] needed
in the second derivatives in one pass through the data.

Once first derivatives and the average information matrix is computed new estimates of 8 can be computed
in a way similar to the update in the Fisher scoring algorithm.

EXAMPLE

The AI-REML algorithm was compared with the DF-REML procedure of Jensen and Madsen (1992). Data
from the Danish performance testing scheme for potential Al bulls were used. Data consists of weight at 1%, 6
and 11 months of age, and daily gain and feed intake in different ages periods. A total of 3870 animals with
records and 1081 sires and maternal grand sires were included in the analyses.

The comparisons were made for univariate and bivariate analyses. In addition multivariate analyses up to
5 traits were conducted by AI-REML. In all cases, the same model were used for all traits. Per trait, the model
included 97 station x year X quarter classes, 21 dam year of birth classes, 4 regressions and 4951 animal effects.
Parameters estimated by the two procedures for a bivariate analyses of weight at 1% and 6 months of age are
shown i Table 1.
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Table 1.  Variance and covariance components for weight at 1% and 6 montbs of age, estimated by DF-REML

and AI-REML.
Estimated parameters”
2 2 2 2
Oy Tas Os, % ety Oe,
DF-REML 13.04 29.86 100.83 41.06 57.62 222.64
AI-REML 13.00 29.79 100.67 41.08 57.66 222.75

*) Likelihoods are in Table 2.

Tabie 2. Comparison of DF-REML and AI-REML for analyzing different number of traits.

DF-REMLY AI-REML

No. of Liketihood = CPU-time Likelihood CPU-time
traits L=2ln1  evaluations (sec)? L=2In1  evaluations (sec)®

1 20737.796 39 803 20737.796 S 60.1
2 46045.431 472 1837.6 46045.430 9 341.2
3 74370.553 10 1024.0
4 111481.805 13 2785.1
5 148905.075 13 5285.9

) For DF-REML.: 3, 4 and 5 trait analyses not run
2 On a CRAY C92A
DISCUSSION

In test rums, the AI-REML and DF-REML algorithms gave almost identical parameter estimates. The Al-
REML algorithm converged in 13 or less rounds for all the analyses conducted, while DF-REML used 472 rounds
for the bivariate analyses (3, 4 and 5 traits DF-REML analyses were not run due to constrains on CPU time).
Even though that the AI-REML algorithm require more computations per round of iteration, the savings in
computer time were considerable. In the bivariate analyses, the AI-REML algorithm used less than 20% of the
computer time used by the DF-REML algorithm.

After further testing and optimization of the program, it will be included in the DMU-package of Jensen and
Madsen (1992). One possible problem is that iterates might not be in the acceptable parameter space. Possible
solutions including using a Choleski decomposition (Lindstrom and Bates, 1988) are under investigation. This
might avoid numerical problems if the componenis are near Zero.
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