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ANIMAL AND PLANT BREEEDING LARGELY EMPLOY STATISTICAL ABSTRACTIONS

Coping with complexity

First assumption: there is a genetic signal and an environmental signal
Second assumption: the joint effect translates into a phenotye y

Choices? <

Y = f(G,E) For some UNKNOWN function f

Huge number of possibilities for f!

Y= G"?
V= 9
¥ = G + F + GE‘? - Is an assumption
e ! (plant breeders very aware)
Y= (G+E)"™?

Y =G+ E? - Is an even a stronger assumption

(animal breeders typically ignore it)



BIG-BANG OF WHOLE-GENOME REGRESSIONS

Cast
Copyright © 2001 by the Genetics Society of America God: BLUP
Adam: Bayes A
Eve: Bayes B

Prediction of Total Genetic Value Using Genome-Wide Dense Marker Maps

T. H. E. Meuwissen,* B. |. Hayes' and M. E. Goddard"*

*Research waf{) al Science and Health, 8200 AB Lelystad, The Netherlands, "Victorian Institute of Animal Scienc,
Attwood 3049 Victora, {e alia and *Iusit ule of Land and Food Resources,
niversity of Melbourne, Parkonll 3052, Victona, Australia

Manuscript received August 17, 2000
Accepted for publication January 17, 2001

GENOMIC SELECTION: A DOMINANT RESEARCH AND DEVELOPMENT THEME

DRACULA

"The curse of the Bayesian Alphabet” ‘a’w

?r\“? -

Bayes A, B, Bayes BLUPC, C-pi, D, Fast-B, L, R, RC, RS, TA, TB, TC,
RKHS, NN...
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LOOKING AHEAD

(entirely personal and subjective “shopping list”)
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Qutlier detection, control and
accommodation

Genomic similarity matrix as estimand
The Bayesian Alphabet marches on!
On MCMC and “discovery”

GE Interactions and multi-omics

Deep learners: experience so far



Area 1.
QOutlier detection, control and
accommodation



The problem is of concern...
(at least in Denmark and Finland)
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Short communication: Multivariate outlier detection for routine Nordic
dairy cattle genetic evaluation in the Nordic Holstein and Red population

H. Gao,*' P. Madsen,* J. Pésd, T G. P. Aamand,f M. Lidauer,§ and J. Jensen”

*Center for Quantitative Genetics and Genomics, Department of Molecular Biology and Genetics, Aarhus University, DK-8830 Tjele, Denmark
tFaba Co-Op, FIN-01301 Vantaa, Finland

IMordic Cattle Genetic Evaluation, DK-8200 Aarhus, Denmark

§Maftural Resources Institute Finland (Luke), FIN-31600 Jokioinen, Finland

9-trait model: milk, fat, protein in 3 lactations
-Compute Mahalanobis intra year-lactation-DIM classes
for each record. Cut-offs for edits discarding outliers of increased stringency

The results showed that, averaged over all scenarios,
gains of 0.005 to 0.048 on prediction accuracy have
been obtained by deleting the multivariate outliers.
The improvements were more profound for progeny of
young bulls compared with progeny of proven bulls. It
is easy to implement this multivariate outlier-detection
procedure in the routine genetic evaluation for different
dairy cattle breeds; however, an optimal cutoff value
for Mahalanobis distance needs to be defined to achieve
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N = 500 bivariate normals N(0, X)

70.8 0.7 e
2_10.7 0.8] Prob(mutation) = 0.08

Mutation adds 6 = (1,—1)'
Would not appear as outliers in x or y axis

Effect of bivariate outliers (red dots, 36 out of N=500) on regressions
Blue=reg. of y on x unmutated. Red=reg. y on x mutated
Green=fitted X on y unmutated. Black=reg. X on y mutated

Densities of Mahalanobis distances away from mean vector
Black= wild type. Red=mutants

M =454 Bandwidth = 01646




ACCOMODATING OUTLIERS
CANAUTOMATE?

DISCARD DATA USING AD-HOC RULES (no account for exclusion uncertainty and
arbitrariness in rules—GAOQ et al. 2018 recognized the issue)

FIT ROBUST RESIDUAL DISTRIBUTION TO (Andrews and Mallows, 1974):
> ATTENUATE ABERRANT (W.R. TO THE MODEL) OBSERVATIONS

ANIMAL BREEDERS HAVE DONE IT FOR INFERENCE, NOT PREDICTION!

-STRANDEN AND GIANOLA (1998, 1999) —
-ROSA ET AL. (2003, 2004)

-KIZILKAYA ET A. (2003) — t-distributions (MCMC)
-CARDOSO ET AL. (2006)

—

-GIANOLAET AL. (2018)=> t and Laplace distributions: “Iterative GBLUP”



OUTLIERS IN TMAP: weights assigned automatically

d-values vs test-day yield (h2guess=0.05)
td=black t8=red t12=blue t16=green
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'Bootstrap distribution (b=15,000 samples) of predictive mean-squared error (PMSE) and predictive correlatio’
(PCOR) for GBLUP, TMAP (df=4) and LMAP at selected genomic heritability values (guesses of 0.05 and 0.50
produced MINQUE estimates of 0.07 and 0.15, respectively): test-day milk yield in Brown-Swiss cows.

Density of PMSE b=15000 h2guess=0.05 Density of PMSE b=15000 h2guess=0.50
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EXTENSION TO MULTIVARIATE

OUTLIERS NEEDED

-FOUNDATION: STRANDEN (1996) FOR
T-DISTRIBUTION (MCMC)

-WORK IN PROGRESS FOR NON-MCMC
T AND LAPLACE DISTRIBUTIONS




'r Area 2: Learning similarity matrices among
individuals (G) as an estimation problem

Van Raden proposed marker-based similarity matrix (acts as hype-parameter): G ==— 2 "
> 2n(l-p)
s
Inferring similarity among individuals from =
molecular markers and phenotypes with

Bayesian regression

Daniel Giancla®** and Rohan L. Fernando®

Model specific

genomic variance
Var (g/X) = XDX' = Gag,,/

/

A diagonal matrix An unknown matrix

p(G|X) = prior distribution based on markers
y = vector of phenotypes (single or multiple — traits)
p(G|X, y) = posterior distribution informed by markers and ph

HAVE DEVELOPED A EORMALISM FOR BAYES A, B, C, C



EXAMPLE: BAYES A

Prior
distribution of

Gpa

Posterior distribution of

Prob. non-null effect

EXAMPLE: BAYES B

o =N 2p,(1—p)S? T .
R 7 ? vy — 2 Prior
distribution of
Sample from prior Gpp
Gl = 21 XDzX5=12 5 )
7555 Sample from posterior Posterior
distribution of

. - - = = - n - -y -
D5zz 15 a diagonal matrix containing either oz or 0 in position j Gpp



EXTENT TO TO WHICH PHENOTYPES

INFORM ABOUT SIMILARITY:
Frobenius distances between TRUE OTL G
and their prior and posteriors

10 chromosomes- 2000 SNP (100 QTL)- Bayes Cmt
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Frequency

Pinus taeda: N=807 p=4828 Bayes Cmt bivariate analysis
(only 100 pairs of individuals)
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Area 3: The Bayesian Alphabet
marches on!

A multiple-trait Bayesian Lasso for genome-enabled association and

prediction of complex traits

Daniel Gianola®®®? Rohan L. Fernando and Chris-Carolin Schén®
* Department of Animal Sciences, University of Wisconsin-Madison, USA:
b Department of Dairy Science, University of Wisconsin-Madison. USA:
“Department of Animal Science, lowa State University, USA
d Department of Plant Sciences, Technical University of Munich.

TUNM School of Life Sciences. Germany.




2.1.2 Multivariate Laplace prior distribution (MLAP) for marker effects

Independent T-variate Laplace prior distributions with a null mean vector will be assigned to each of
the I' x 1 vectors ,Bj (7=1,2, ... p). Gémez et al. (2007) presented a multi-dimensional version of the
power exponential (PE) family of distributions; one special case 1s the multivariate Laplace distribution

(MLAP). The density of the MLAP distribution with a zero-mean vector used here has form

IT (%)

p(B;%) = (8)

z

527 72T (1 + 7)) 20+7)

where ¥ ={Zpw} 1s a T x T positive-definite scale matrix. The variance-covariance matrix of the
distribution 1s
Var(B;/3)=4(T +1) ¥ =B; (9)

a} Density of two uncomelated bivariate Laplace random variables with oull means and unst Il AT i g [ = B ) Density of rwo negatively comrelated bivariate Laplace random variables with mall means
scales, 2] and el are coordinates of bivaria vectors, )] ﬁa“}r nfrrmpl;s;r;el} comelated bﬂ'ﬂrﬁel;-ﬂpmm warigbles with mil means and unit scales, 2] and e are coordinates of bivariate vectors
umif scales. & el are coordinates of bivariate vectors
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Analysis of wheat data set

n=599 inbred lines
p=1279 DaRT markers
Traits: grain yield in environments 1 and 2

Bivariate GBLUP (maximum likelihood for variance
components)

Bivariate Lasso
Six chains of 1500 iteration each (evaluate MCMC)

Gelman’s R-statistics+ Geweke’s batching for convergence
assessment

Six chains of 2000 samples post-burn in: 12000 samples
used for inference



LASSO
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MUMA PLOTS
(MULTIVARIATE MANHATTAN)

Mahalanobis squared distances (M) by method R )
. Mahalanobis squared distances (M)

(45 degree line in black))
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Area 4. On MCMC and “discovery”

MCMC-Based Inference in the Era of Big Data:

A Fundamental Analysis of the Convergence Complexity

of High-Dimensional Chains

Bala Rajaratnam and Doug Sparks

Stanford University

August 28, 2015



Variational distance between posterior 1t
and estimate of (distribution) at iterate k

“Starting distance”

Ranges in 0-1 Convergence rate
1 when the two distributions differ

AUTHORS:

In summary, our theoretical and numerical analysis above indicates that regardless of the

type or form of regression (standard regression, lasso, elastic net, or spike-and-slab), there

1s a universal geometric convergence rate of the form r = p/(n 4+ p — 2).




ITERATIONS REQUIRED TO REDUCE STARTING VARIATIONAL DISTANCE T0 107

n P Parameterization in n
1000 50000 23
|| 500000 23
20 x 10° 23

GENOTYPIC VALUES |

5000 50000 23
500000 23
| 20 x 10° 23

n p Parameterization in n Parameterization in p

1000 50000 23 816
|| 00000 23 12886
R R EFFECTS 20 x 10° 23 322350
5000 50000 2 169
00000 23 2587
MARKER EFFECTS —— >
| 20 x 10° 23 64664
n P Parameterization in 1 Parameterization in p Parameterization in 4p
I |
| 1000 50000 23 816 3235 |
I 500000 23 12556 51956 |
| 20 « 10° 23 322350 1.6118 x 10° |
I I
|| 5000 50000 23 169 653 H
|| 800000 23 2587 10324 H
I 20 x 10° 23 64664 2.6863 =< 10° |
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GENOMIC SELECTION

Prediction of Plant Height in Arabidopsis thaliana
Using DNA Methylation Data

Yaodong Hu,*' Gota Morota,’ Guilherme J. M. Rosa,** and Daniel Gianola***

*Department of Animal Sciences, *Department of Biostatistics and Medical Informatics, and bDepanmenI of Dairy Sclence,
University of Wisconsin, Madison, Wisconsin 53706, and "Department of Animal Science, University of Nebraska, Lincoln, Nebraska
68583

GENOMIC SELECTION

Increased Proportion of Variance Explained and
Prediction Accuracy of Survival of Breast Cancer
Patients with Use of Whole-Genome

Multiomic Profiles

Ana l. Vazquez,™' Yogasudha Veturi," Michael Behring,"® Sadeep Shrestha,” Matias Kirst,

Marei R. Resende, and Gustavo de los Campos‘-"
* Department of Epidemiclogy and Biostatistics, M an State Universi Lansing, Michigan 48824, TBiostatistics
Department, *Comprehensive Cancer Center, and Spepartment of E pidemiology, University of Alabama at Birmingham, Alabama
35294, *"School of Forest Resources and Conservation and University of F—Iorlda Genetics Institute, University of Florida,
Gainesville, Florida 32611, and **Statistics Department, Michigan State University, East Lansing, Michigan 48824

ABSTRACT Whole-genome multiomic profiles hold valuable information for the analysis and prediction of disease risk and progression
However, integrating high-dimensional multilayer omic data into risk-assessment models is statistically and computationally challenging.
We describe a statistical framework, the Bayesian generalized additive model ((BGAM), and present software for integrating multilayer
high-dimensional inputs into risk-assessment models. We used BGAM and data from The Cancer Genome Atlas for the analysis and
prediction of survival after diagnosis of breast cancer. We developed a sequence of studies to (1) compare predictions based on single omics
with those based on clinical covariates commonly used for the assessment of breast cancer patients (COV), (2) evaluate the benefits of
combining COV and omics, (3) compare models based on (a) COV and gene expression profiles from oncogenes with (b) COV and whole:
genome gene expression (WGGE) profiles, and (4) evaluate the impacts of combining multiple omics and their interactions. We report that
(1) WGGE profiles and whole-genome methylation (METH) profiles offer more predictive power than any of the COV commonly used in
dinical practice (e.g., subtype and stage), (2) adding WGGE or METH profiles to COV increases prediction accuracy, (3) the predictive power
of WGGE profiles is considerably higher than that based on expression from large-effect oncogenes, and (4) the gain in prediction accuracy
when combining multiple omics is consistent. Our results show the feasibility of omic integration and highlight the importance of WGGE
and METH profiles in breast cancer, achieving gains of up to 7 points area under the curve (AUC) over the COV in some cases.

Theor Appl Genet (2014) 127:595-607
DOIL 10.1007/500122-013-2243-1

ORIGINAL PAPER

A reaction norm model for genomic selection using
high-dimensional genomic and environmental data

Diego Jarquin - José Crossa * Xavier Lacaze * Philippe Du Cheyron
Joélle Daucourt - Josiane Lorgeou * Francois Piraux - Laurent Guerreiro *
Paulino Pérez - Mario Calus - Juan Burguefio - Gustavo de los Campos




RKHS FOR GENOTYPE X ENVIRONMENT INTERACTION

‘\l“\’ - . .
S4BV J. Dairy Sci. 100:2042-2056

= }E https://doi.org/10.3168/jds.2016-11543

,,,\.!-’_pe- © American Dairy Science Association®, 2017,

Genotype by environment (climate) interaction improves genomic
prediction for production traits in US Holstein cattle

F. Tiezzi,*' G. de los Campos,t K. L. Parker Gaddis,t and C. Maltecca*
*Department of Animal Science, North Carolina State University, Raleigh 27695

tDepartment of Epidemiclogy and Biostatistics, Michigan State University, East Lansing 48828
$Council on Dairy Cattle Breeding, Bowie, MD 20716
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Figure 3. Accuracy of prediction for the new bulls and incomplete progeny test cross-validation scenarios. Models included genomic effect (G), geographical region effect (R),
erd effect (H), latitude and longitude effects (L), herd management effects (M), herd fertility effects (F). service-sire choice effects (S), culling descriptors effects (C), and climate
ariables effects (W), Histograms (error bars) report the average (SD) over the 4 folds used in the cross-validation.




hioRxiv preprint first posted online Jul. 6, 2018; doi: http:fdx.doi.org/10.1101/363309. The copyright holder for this preprint (which was not
peer-reviewed) is the authorffunder. All rights reserved. Mo reuse allowed without permission.

Predicting Growth and Carcass Traits in Swine
Using Metagenomic Data and Machine Learning
Algorithms

Christian Maltecca'-**,puc Lu'+, Costantino Schillebeeckx?, Nathan P McNulty2, Clint
Schwab®, Caleb Schull®, and Francesco Tiezzi'-*



Area 6: Deep learners: experience so far
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International Symposium on Bioinformatics, Chemometrics and Metabolomics 10P Publishing
IOP Conf. Series: Journal of Physics: Conf. Series 835 (2017) 012003 doi:10.1088/1742-6596/835/1/012003 Deep Belief Network
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Prediction of maize phenotype based on whole-genome single

nucleotide polymorphisms using deep belief networks ., O—.—O

H Rachmatia’, W A Kusuma, and L S Hasibuan

Department of Computer Science, Bogor Agricultural University, Indonesia F 1gure 1. The DBN architecture for £enomic predlctlon

Table 1.Cross-validation (cv) correlation between predicted and observed phenotypes

_ _ Model*

Trait—-environment

RKHS BL BLUP DBN
MFL - WW 0.607 0.790 —* 0.295
MFL - S8 0.674 0.778 0.464 0.325
FFL - WW 0.588 0.781 —° 0.270
FFL - SS 0.648 0.774 0.521 0.370
ASI - WW 0.547 0.513 0.469 0.559
ASI - SS 0.572 0.517 0.481 0.579
GY -WW 0.514 0.525 0.515 0.445
GY -SS 0.453 0.415 0.442 0.383

Four models were fitted to each trait (FFL, MFL, ASI and GY) and environment (SS. severe drought stress: WW, well watered)
combination.

* Models were molecular marker (SNPs) using reproducing kernel Hilbert space (RKHS) regression. Bayesian LASSO (BL), best linear
unbiased predictor (BLUP), and our proposed method deep belief network (DBN).
" BLUP were not computed because the estimated genetic variances were negligible [9].

: NO CONVINCING EVIDENCE OF SUPERIORITY OF



GEMETICS GENOMIC PREDICTION I

Can Deep Learning Improve Genomic Prediction of
Complex Human Traits?

Pau Bellot,*" Gustavo de los Campos,** and Miguel Pérez-Enciso ==
= antre for Ressanch in Agricultural Gemomics ([CRAG), Conssio Supenior de Investigadiones Cientificas (CSKC) - Institut de Recercai
Tecnologies Agroalimentarss (IRTA)- Universitat Aundnoma de Barcslona (LA B) - Universtat de Barcelona (UB} Corsortium, 08193

Bellatera, Barcelona, Spain, TDepartment of Epidemiology and Biostatistics, and *Department of Statistics, Michigan State
Univearsity, East Lansing, hMichigan 4882 4, and Sinstitut Catala de Recerca Awancada $OREA), OE010 Barcglona, Spain

ORCID IDs: 00000001 -2502-4710 (PE. Y 0000-0001-5692-7 129 (G dL) 0D00-0003-3524-995 {M.P.-E.)
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CONCLUSION

Draw your own conclusions!
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