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ANIMAL AND PLANT BREEEDING  LARGELY EMPLOY STATISTICAL ABSTRACTIONS

Huge number of possibilities for f!

(plant breeders very aware)

(animal breeders typically ignore it)



BIG-BANG OF WHOLE-GENOME REGRESSIONS

Cast
God: BLUP

Adam: Bayes A
Eve: Bayes B

“The curse of the Bayesian Alphabet”
Bayes A, B, Bayes BLUPC, C-pi, D, Fast-B, L, R, RC, RS, TA, TB, TC, 

RKHS, NN…

GENOMIC SELECTION: A DOMINANT RESEARCH AND DEVELOPMENT THEME
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A MACHINE LEARNING PERSPECTIVE



LOOKING AHEAD

(entirely personal and subjective “shopping list”)



Area 1: Outlier detection, control and 
accommodation

Area 2: Genomic similarity matrix as estimand

Area 3: The Bayesian Alphabet marches on!

Area 4: On MCMC and “discovery”

Area 5: GE interactions and multi-omics

Area 6: Deep learners: experience so far



Area 1: 
Outlier detection, control and     

accommodation



The problem is of concern…
(at least in Denmark and Finland)

9-trait model: milk, fat, protein in 3 lactations
-Compute Mahalanobis intra year-lactation-DIM classes

for each record. Cut-offs for edits discarding outliers of increased stringency





ACCOMODATING OUTLIERS
CAN AUTOMATE?

• DISCARD DATA USING AD-HOC RULES (no account for exclusion uncertainty and 
arbitrariness in rules—GAO et al. 2018 recognized the issue)

• FIT ROBUST RESIDUAL DISTRIBUTION TO (Andrews and Mallows, 1974): 
ATTENUATE ABERRANT (W.R. TO THE MODEL) OBSERVATIONS

• ANIMAL BREEDERS HAVE DONE IT FOR INFERENCE, NOT PREDICTION!

-STRANDEN AND GIANOLA (1998, 1999)
-ROSA ET AL. (2003, 2004)
-KIZILKAYA ET A. (2003)
-CARDOSO ET AL. (2006)

-GIANOLA ET AL. (2018) t and Laplace distributions: “Iterative GBLUP”

t-distributions (MCMC)



OUTLIERS IN TMAP: weights assigned automatically

ITALIAN BROWN-SWISS
TEST-DAY YIELD



Bootstrap distribution (b=15,000 samples) of predictive mean-squared error (PMSE) and predictive correlation
(PCOR) for GBLUP, TMAP (df=4) and LMAP at selected genomic heritability values (guesses of 0.05 and 0.50 
produced MINQUE estimates of 0.07 and 0.15, respectively): test-day milk yield in Brown-Swiss cows.

LMAP “BEST” FOLLOWED BY TMAP4 AND THEN BY GBLUP



EXTENSION TO MULTIVARIATE 
OUTLIERS NEEDED

-FOUNDATION: STRANDEN (1996) FOR 
T-DISTRIBUTION (MCMC)

-WORK IN PROGRESS FOR NON-MCMC 
T AND LAPLACE DISTRIBUTIONS 



Area 2: Learning similarity matrices among 
individuals (G) as an estimation problem

A diagonal matrix

Model specific
genomic variance

An unknown matrix

𝑝𝑝 𝐺𝐺 𝑋𝑋 = 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 𝑑𝑑𝑝𝑝𝑑𝑑𝑑𝑑𝑝𝑝𝑝𝑝𝑑𝑑𝑑𝑑𝑑𝑑𝑝𝑝𝑝𝑝𝑑𝑑 𝑑𝑑𝑏𝑏𝑑𝑑𝑏𝑏𝑑𝑑 𝑝𝑝𝑑𝑑 𝑚𝑚𝑏𝑏𝑝𝑝𝑚𝑚𝑏𝑏𝑝𝑝𝑑𝑑
𝑦𝑦 = 𝑣𝑣𝑏𝑏𝑣𝑣𝑑𝑑𝑝𝑝𝑝𝑝 𝑝𝑝𝑜𝑜 𝑝𝑝𝑝𝑏𝑏𝑑𝑑𝑝𝑝𝑑𝑑𝑦𝑦𝑝𝑝𝑏𝑏𝑑𝑑 𝑑𝑑𝑝𝑝𝑑𝑑𝑠𝑠𝑠𝑠𝑏𝑏 𝑝𝑝𝑝𝑝 𝑚𝑚𝑑𝑑𝑠𝑠𝑑𝑑𝑝𝑝𝑝𝑝𝑠𝑠𝑏𝑏 − 𝑑𝑑𝑝𝑝𝑏𝑏𝑝𝑝𝑑𝑑𝑑𝑑

𝑝𝑝 𝐺𝐺 𝑋𝑋, 𝑦𝑦 = 𝑝𝑝𝑝𝑝𝑑𝑑𝑑𝑑𝑏𝑏𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 𝑑𝑑𝑝𝑝𝑑𝑑𝑑𝑑𝑝𝑝𝑝𝑝𝑑𝑑𝑑𝑑𝑑𝑑𝑝𝑝𝑝𝑝𝑑𝑑 𝑝𝑝𝑑𝑑𝑜𝑜𝑝𝑝𝑝𝑝𝑚𝑚𝑏𝑏𝑑𝑑 𝑑𝑑𝑦𝑦 𝑚𝑚𝑏𝑏𝑝𝑝𝑚𝑚𝑏𝑏𝑝𝑝𝑑𝑑 𝑏𝑏𝑑𝑑𝑑𝑑 𝑝𝑝𝑝𝑏𝑏𝑑𝑑𝑝𝑝𝑑𝑑𝑦𝑦𝑝𝑝𝑏𝑏𝑑𝑑

HAVE DEVELOPED A FORMALISM FOR BAYES A, B, C, Cπ, R

Van Raden proposed marker-based similarity matrix (acts as hype-parameter):



EXAMPLE: BAYES A

Sample from prior

Prior 
distribution of 

𝐺𝐺𝐵𝐵𝐵𝐵

Sample from posterior

Posterior distribution of 
𝐺𝐺𝐵𝐵𝐵𝐵

EXAMPLE: BAYES B

Sample from posterior Posterior 
distribution of 

𝐺𝐺𝐵𝐵𝐵𝐵

Sample from prior
Prior 

distribution of 
𝐺𝐺𝐵𝐵𝐵𝐵

Prob. non-null effect



EXTENT TO TO WHICH PHENOTYPES 
INFORM ABOUT SIMILARITY:
Frobenius distances between TRUE QTL G

and their prior and posteriors 
10 chromosomes- 2000 SNP (100 QTL)- Bayes Cπ

N=500

N=2000

N=4000



Pinus taeda: N=807  p=4828 Bayes Cπ bivariate analysis
(only 100 pairs of individuals)

Gall volume Rust bin

Gall volume vs Rust bin Basis for deciding
whether trait-specific
Similarities exist



Area 3: The Bayesian Alphabet 
marches on!





Analysis of wheat data set
• n=599 inbred lines
• p=1279 DaRT markers
• Traits: grain yield in environments 1 and 2
• Bivariate GBLUP (maximum likelihood for variance 

components)
• Bivariate Lasso
• Six chains of 1500 iteration each (evaluate MCMC)
• Gelman’s R-statistics+ Geweke’s batching for convergence 

assessment
• Six chains of 2000 samples post-burn in: 12000 samples 

used for inference





MUMA PLOTS
(MULTIVARIATE MANHATTAN)



Area 4: On MCMC and “discovery”



Variational distance between posterior π
and estimate of (distribution) at iterate k

Convergence rate

“Starting distance”

Ranges in 0-1
1 when the two distributions differ

AUTHORS:



ITERATIONS REQUIRED TO REDUCE STARTING VARIATIONAL DISTANCE T0 𝟏𝟏𝟏𝟏−𝟕𝟕

GENOTYPIC VALUES

MARKER EFFECTS

MARKER EFFECTS
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Area 5: Multi-omics and GE



RKHS FOR GENOTYPE X ENVIRONMENT INTERACTION





Area 6: Deep learners: experience so far



RESULTS: NO CONVINCING EVIDENCE OF SUPERIORITY OF  DBN



STATURE

BONE HEEL MINERAL
DENSITY





CONCLUSION

Draw your own conclusions!
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