

FROM PROJECT TO PRACTICE, SUCCESSFUL IMPLEMENTATION OF GS IN A COMMERCIAL BARLEY BREEDING PROGRAM

GENSAP 6th annual meeting – Barley breeder Jens Due Jensen

INVOLVEMENT IN GENSAP

- Provided by breeding companies (Sejet and Nordic Seed):
 - 550 Lines from NOS commercial winter barley breeding program
 - 9K SNP genomic information (for some 50K)
 - Phenotypic data for specific seed quality traits + cereal grain sample
 - Seed size distribution
 - Specific weight (density)
 - Protein content
- To be provided by university partner (University of Copenhagen):
 - Mineral content profiling by ICP-MS
 - Amino acid profiling
 - Phytic acide, Pi, and starch profiling
 - Models (QGG Luc Janss)

GENSAP – ACCURACY ON SELECTED TRAITS

Specific weight (density) $R^2 = 0,7474$

Cultivating Value

Seed size distribution R² = 0,7652

-30

•

X axis = EBV, Y axis = GEBV

GENOMIC SELECTION PROJECTS AT NORDIC SEED

- Genomic selection for complex traits in barley and wheat breeding
 - GUDP project 2013-2017
 - Partner QGG Foulum Just Jensen
- Better malting barley by modeling environmental sensitivity, genomics and metabolomics
 - Inovationsfonden financed project 2015-2017
 - Partners QGG Foulum Just Jensen and I-nano Aarhus Frans Mulder
- Økosort II Genomic selection for traits related to organic farming
 - GUDP financed project 2018-2021
 - Partners Økologisk Landsforening and Agrologica

DEVELOPMENT OF TRAINING POPULATION

TRAITS & POPULATION STRUCTURE

- All important agronomic and quality related traits was recorded, i.e.,
 - Grain yield (kg/plot), Protein
 - Heading, Height, Lodging etc.
 - All major diseases
 - Seed size distribution, Density
 - Malting/brewing quality

In total 30 traits

SINGLE TRAIT GP & MULTI TRAIT GP APPROACHES FOR PREDICTING YIELD IN F6 BARLEY

Genomic matrix

G2:

Barley

A: Pedigree matrix / spatial effects

- AG: Pedigree & Genomic matrix / spatial effects
- G1: Genomic matrix / spatial effects

Cultivating Value

Nordic Seed

SPRING BARLEY BREEDING PROGRAM

Generation	Details
Crossing	
F1	Greenhouse
F2-F4	Selection for disease resistance (F4 = 150.000 individuals)
F5 (NL-3)	One Yield plot – seed coming from one plant (2000 individuals)
F6 (NL-2)	Multi-location replicated yield trials (330 individuals)
F7 (NL-1)	Multi-location replicated yield trials (30 individuals)

VALIDATIONS STRATEGIES

- In the first years TP < 900</p>
 - Leave one out / Leave family out
- TP > 900 lines
 - Leave set out

Based on F6 line performance (2018) the selection pressure on each group will be determined

SELECTION OF THE 30 BEST LINES FROM F6 BASED ON 12 PLOT AVERAGE FROM 4 LOCATIONS (YIELD)

CORRELATION BETWEEN F5 GEBV (YIELD) AND F6 YIELD OBS

CORRELATION BETWEEN F5 YIELD (1 PLOT) AND F6 YIELD 12 (PLOTS)

THE ANSWER IS GENOMIC SELECTION!!

SORRY WHAT WAS THE QUESTION?

Gen	Before implementation of GS	After
Cross	ing	No.
F1	Greenhouse	pa
F2-F4	Selection for disease resistance (F4 = 150.000 individuals)	rents
F5 (N	L-3) One Yield plot – seed coming from one plant (200 individuals)	0
F6 (N	L-2) Multi-location replicated yield trials (330 individua	als) 30 % less plot
F7 (N	L-1) Multi-location replicated yield trials (40 individual	s) 30 % less plot

PUBLICATIONS AND ACKNOWLEDGEMENT

2-3 peer reviewed paper + several conference abstracts and posters

PLOS ONE	
RESEARCH ARTICLE Genomic Prediction of Seed Quality Traits Using Advanced Barley Breeding Lines Nanna Hellum Nielsen ¹ *, Ahmed Jahoor ^{1,3} , Jens Due Jensen ¹ , Jihad Orabi ¹ , Fabio Cericola ² , Vahid Edriss ¹ , Just Jensen ²	RESEARCH ARTICLE Optimizing Training Population Size and Genotyping Strategy for Genomic Prediction Using Association Study Results and Pedigree Information. A Case of Study in Advanced Wheat Breeding Lines Fabio Cericola ¹ *, Ahmed Jahoor ^{2,3} , Jihad Orabi ³ , Jeppe R. Andersen ³ , Luc L. Janss ¹ , Just Jensen ¹
Under review in Frontiers in Plant Science Multiple trait genomic prediction improves the pred winter wheat breeding programs. <u>Hsin-Yuan Tsai</u> ^{1*} , Fabio Cericola ¹ , Vahid Edriss ² , Je Jensen ² , Ahmed Jahoor ^{2,3} , Luc L. Janss ¹ , Just Jenser	liction accuracy in spring barley and eppe R. Andersen ² , Jihad Orabi ² , Jens D. n ¹
Cultivating Value	Nordic Seed

THANK YOU FOR LISTENING

