

Adjusting for macro-environmental sensitivity in growth rate

Macro-ES \neq G×E

 Macro-ES → change in EBV across environments

 G×E → differences in change between genotypes

Statistical approaches

- Character state models
 - Discrete environments

- Reaction norm models
 - Continuous environments

The problem of knowing the environment

- Phenotypic means as covariate
- Pre-estimated covariates
- Iteratively updated covariate

Bayesian analysis of the linear reaction norm model with unknown covariates G. Su, P. Madsen, M. S. Lund, D. Sorensen, I. R. Korsgaard and J. Jensen 2006

Macro-environmental sensitivity for growth rate in Danish Duroc pigs is under genetic control¹

Mette D. Madsen,^{*,2} Per Madsen,^{*} Bjarne Nielsen,[†] Torsten N. Kristensen,^{‡,§} Just Jensen,^{*} and Mahmoud Shirali^{*,}[©]

2018

CENTER FOR QUANTITATIVE GENETICS AND GENOMICS

Data

- Phenotype: ADG (g/day)
 - Sex specific trait, r_g=0.88 (Nielsen et al., 2018)

	Boars	Gilts
#Records	32,297	42,724
Mean (g/day)	1,184	1,117
SD (g/day)	123	108
#Herds	16	19

		Boars				Gilts		
		HYM	Group	Litter	HYM	Group	Litter	
Levels		1212	3398	13802	1280	4200	14973	
Animals	Mean (SD)	27 (16)	10 (2)	2 (1)	33 (21)	10 (2)	3 (2)	
er level	Min	2	1	1	3	1	1	
	Max	103	15	10	139	15	14	

Model

- $\mathbf{y} = \mathbf{X}\mathbf{b} + \mathbf{Z}\mathbf{a}_0 + \mathbf{H}\mathbf{a}^* + \mathbf{W}\mathbf{h} + \mathbf{V}\mathbf{p} + \mathbf{L}\mathbf{l} + \mathbf{e}$
- Covariate (H) updated in each iteration based on the HYM effect (h)
- RJMC module in DMU (Madsen and Jensen, 2013)
- Bayesian setting (Gibbs sampling)
 - 2.5 M rounds
 - 500k burn-in
 - 200 interleave

σ_a^2 and h^2

	Boars	Gilts
$\sigma_{a_0}^2$	1385 ^a	1333 ^a
$\sigma_{a^{\ast}}^{2}$	0.014 ^a	0.024 ^a
r _{ao,a*}	-0.227	0.144
$\sigma_{\rm h}^2$	5076 ^a	3755 ^a

^a significantly different from zero

CENTER FOR QUANTITATIVE GENETICS AND GENOMICS

 r_g and ch² 0.5 0.4 Gilts Gilts Heritability 0.3 0.30 1.0 0.2 0.8 0.1 Smallest σ_e^2 0.20 0.0 Largest σ_a^2 Coheritability Correlation 0.6 -2 -1 -3 Environmental deviation, σ_h 0.4 0.10 0.2 -3 σ_h Smallest σ_e^2 $0 \sigma_h$ $3 \sigma_h$ 0.00 0.0 Largest σ_e^2 2 3 2 3 -3 -2 -3 -2 0 -1 -1 Environmental deviation, σ_h Environmental deviation, σ_h

Gilts

0

3

2

Benefits of the iterative update

- Comparison between
 - Iteratively updated covariate model (I)
 - Phenotypic means as covariate model (PM)

Prediction ability	Boars		ars Gilts		Bias	Boars		Gilts	
	1	PM	I.	PM		I.	PM	I.	PM
Direct EBV	0.69	0.59	0.74	0.72	Direct EBV	0.98 (0.03)	0.73 (0.03)	1.00 (0.03)	0.73 (0.02)
Macro-ES EBV	0.77	0.58	0.90	0.73	Macro-ES EBV	0.69 (0.02)	0.70 (0.03)	0.86 (0.01)	0.74 (0.02)

- Decrease macro-ES
 - Less response to change
- Decrease G×E
 - Similar response to change
- Environment specific selection
 - InterBull

- G×E allows for adjusting macro-ES
- Growth rate in Danish Duroc exhibits G×E

- Reducing macro-ES of ADG in Danish Duroc will not reduce the level
- Coheritability can increase even if genetic correlations decrease
- The iteratively updated model performed better than a model with phenotypic means.