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Connecting genetic variants to complex phenotypes

1. ldentify statistical connections between points (or areas) in the genome
and the phenotype
* Drive hypotheses for biological studies of specific genes/regions in
specific context

2. Generate insights on genetic architecture of phenotype
* No. of loci, effect sizes, MAF, dispersed across the genome etc.
3. Build statistical models to predict phenotype from genotype
¢ “Show me your genome and | will tell you what diseases you will get”
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ldentifying genetic factors: different approaches

1. Linkage analysis - largely (if not entirely) unsuccessful because this
approach is only adequately powered with realistic sample sizes to
identify very large genetic effects

2. Candidate-gene studies - suffered from a number of methodological
limitations (for example, small number of samples and genetic markers
tested and have been largely discontinued

3. Genome-wide association studies (GWAS)
= Development of genotyping arrays (affordable cost)

* Thousands of individuals genotyped for millions of genetic variants
became a reality

» Method development (imputation, population structure)
= Became a powerful tool to identify genetic associations
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A decade of GWAS - revolutionized complex trait genomics
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Almost any (heritable) complex trait that has been studied, many loci contribute
to standing genetic variation

The mutational target in the genome appears large so that polymorphisms in
many genes contribute to genetic variation

The proportion of variance explained by individual variants is small
The high rates of replication imply that findings can be trusted
Larger experimental sample sizes will lead to new discoveries

We need new visions and methodologies to fully tackle questions about the
genetic architecture of complex traits

The success of GWAS has not translated into an ability to predict phenotypes
based on identified associated markers
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GWAS: methodology and resource development

» GWAS data have led to new analysis methods

= Better modeling population structure and relatedness between
Individuals in a sample

» Detecting novel variants on the basis of GWAS summary statistics
= Estimating and partitioning genetic (co)variance
» |nferring causality

» GWAS discoveries and interpretation have benefited substantially from
improved algorithms in statistical imputation of unobserved genotypes

= Publicly available resources
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GWAS and DNA markers

1. Single nucleotide polymorphism (SNP)
. Common variants (MAF = 5%)
II.  Low-frequency variants (MAF 1-5%)
ll. Rare variants (MAF < 1%)

2. Indels: (< 1 kb) are the second most common class of mutation in the
genome. They can have far-ranging effects concerning gene
expression and genetic disease

3. Copy number variation (CNV) are structural variants where the number
of copies in the genome varies between individuals
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Growth of curated data in the Animal QTLdDb

Growth by data types
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Association mapping with common variants

1. Large number of QTL identified No.QTL Variance explained (%)

2. Explained a substantial proportion of
additive genetic variance

QTLs Rest of the

genome
3. Nearly 2,500 QTL-SNP in the LD-chip
4, QTL-SNP increases accuracy in across Fat 23 25.12 60.01
breed prediction (Aoxing Liu) Protein 13 1534 48.89

5. Sequence variants at QTL peaks from muilti-
breed GWAS, increase reliability of Milk 26 21.29 63.97
predictions (Irene van den Berg)

Cai et al. BMC Genetics 201819:30
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Rare and low frequency variants

= Large proportion in the genome :

= Rare alleles of large effect certainly also £ 2 - MAF Frequency
make an essential contribution z -

= Evolutionary and quantitative genetic &7
theory both provide strong expectations for ) hﬁm

rare variants
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= Rare variant can pushes an individual over
the disease threshold

0 200 250 300

= Explain part of the ‘missing heritability’

» Among the gene discoveries in recent years,

Approximate # of gene discoveries by method
0 100 150
]
I
I -

majority are rare - BEEEIEIEIEEGEEEREEIEEEEIZEEESES
fear
Boycott et al. AJHG 100:695-705 (2017)
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Rare and low frequency variants - [imitations

Large proportion in the genome, however,
= |argely results in small contribution

= too rare to contribute to the
population variance

= effect sizes very small

= Poor imputation accuracy
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Low power to detect rare variants
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0.01==MAF<0.02

g

0.005<=MAF<0.01 0.001 ==MAF<0.005

Minor Allele Frequency

Zhang et al. Genetics Selection Evolution 2016 48:60
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Relative contribution different MAF-class variants to DRP
varignce
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Rare and low frequency variants: lessons learnt

1. Extremely low power to detect rare variants

2. Method specialized for rare variant mapping performed better compare
to commonly applied models for GWAS

3. They explain larger proportion of variance for fitness traits than for
production traits

4. No additional improvement in prediction accuracy by including them
5. However, if ‘known', improves prediction accuracy

Are we looking at ‘wrong’ phenotypes ?
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Structural variants: DNA alternations

1. CNV affecting protein-coding genes contributes substantially to
phenotype diversity and disease

2. One human on an average has:

1. 0.81 deleted gene

2. 1.75 duplicated gene

3. 70% =1 genic CNV
3. Deletions are potential candidate for loss-of-function
4. Least explored polymorphisms in cattle

Ruderfer et al. Nature Genetics 2016 48:1107-111 1
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Enrichment of deletions on QTL

O 8,480 large deletions (199bp to 773KB)
d 82% of which are novel compared with deletions in the dbVar database

Trait Classes? Fold Enrichment P value’
Health 2 8.91x10-10
Reproduction 1.5 7.4x101
Milk 0.8 2.45x107
Exterior 0.5 1.85x10*
Production 0.5 0.002
Meat and Carcass 0.5 0.058

“Trait classes are from cattleQTLdb. Mesbah-Uddin et al. DNA Research 2018 25:49-59 ..
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Large deletions in three cattle breeds

]
(a) Deletions (b) SNPs
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Large deletions can lead to causality

(a)

Genome STRIiP (Chr23:12,291,747-12,817,073)

(...525,325bp...)
Chr23:12,291,74 7 e Chr23:12,817,073
(CIPOS:-1,2)

(CIEND:-1,2)

(b) TIGRA+BLAT (Chr23:12,291,761-12,817,087)

a ~o -
e ~
~

Reference |AG CTGTGTATGTTTTAAGACTGAAA ]GGTCATG GTG..(525,320bp). .ACAGTTATCTJ TGAAATAGCTGCTTTGAAAG GCAATI
Sso - =

-
-
-~

- S -
R‘earra‘nged lAGCTGTGTATGTI'I'I'AAGAC II'GAAA ITAGCTGC'I'I'I'GAAAGGCAAT [
junction

12,291,761-TGAAA-12,817,087

A ~525-KB deletion on chromosome 23

Mesbah-Uddin et al. DNA Research 2018 25:49-59
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Large deletions: Imputation and mapping
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Imputation accuracy of 4854 deletions on Chr1-29
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12970 animals: 6375 Holstein + 4955 Nordic Red
cattle + 1640 Jersey
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Large deletions - Genomic prediction

Method Proportion of variance Prediction accuracy *
explained (V,/V;) (Pearson’s correlation)
GRM_DEL 0.467 0.537
GRM_50K 0.707 0.628
GCTA' - GREML GRM_DEL + 50K 0.710 0.627
GRM_DEL & 0.709 0.627
GRM_50K
DEL 0.467 0.550
BayesR?2 50k 0.701 0.626
DEL + 50K 0.699 0.630

* Random split: 80% training & 20% testing
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Large deletion study - summary

Genotype of deletion loci could be inferred from auxiliary read-depth data
A high-resolution genetic map of large deletions is provided.

Common deletions could be imputed with high accuracy

Enrichment of deletions on QTL for health and fertility

oo~

Causal variant identification (e.g. ~525 KB deletion causing stillbirth in cattle)
* Managing recessive lethals in a population

6. Potential for inclusion in genomic studies

= could explain (additional) phenotypic variance

= could improve prediction accuracy
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Plelotropy Is highly prevalent

Complex traits are associated with hundreds to thousands of loci strongly suggests
that some of the underlying causal variants are the same.

» (Genetic correlations estimates imply that a number of the same variants affect
two or more traits in a consistent direction

= The same genetic variants can be significantly associated with multiple
diseases and traits in GWAS

»  Analytical methods that estimate genetic correlations frorn GWAS data have
provided evidence for widespread pleiotropy

= The true nature of the pleiotropy is currently unknown but, in some cases, could
Imply an impact of the variants on different tissues, metabolic pathways and/or
at different stages
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QTLs for Milk, fat and protein in Nordic Holstein
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BIG QTL segregating - balancing selection?

Chr5:93945991 MGST -2.30 -1.16 +3.07

Chr14:1802266 DGAT1 -5.86 -3.06 +7.15

Mastitis
resistance
Chr6:88840407 Intergenic -1.98 +3.17
(NPFFR2 &
GC)
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BTA14: Milk vs. Fat QTL
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Are QTLs population specific ?
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Growth index (Holstein)
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High impact variants - largly population specific
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Collaboration is essentidl

Manhattan plot for the meta-analysis of bovine stature with n = 58,265 animals
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Linkage disequilibrium concealing causative locus
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Path from GWAS to biology

» An association between a genetic variant at a genomic locus and a trait
IS not directly informative with respect to the target gene

» The mechanism whereby the variant is associated with phenotypic
differences is not known

» New types of data have provided opportunities to bridge the knowledge
gap from sequence to consequence.

missense variant @ stop_gained

A synonymous_variant B & frameshift_variant
@ 3_prime_UTR_variant ® start_lost
@ intron_variant missense_variant
upstream_gene_variant synonymous_variant

downstream_gene_variant
@ intergenic_variant
Other

“\Qgﬂ INg

Cai et al. BMC Genomics 2018 19:656
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Enrichment of Variant Effect Predictor (VEP) annotations
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Conclusions

1. The decade of GWAS constitutes a clear improvement in the recent history of
reproducibility in genetic research; findings can be trusted.

2. Requirement for large sample sizes; a culture of data sharing

3. QTL-SNP and sequence variants at QTL peaks increase reliability of predictions;
opportunity of utilizing across breed information

4. Can also be deployed to map molecular traits like gene expression, proteomic,
and metabolomics measures; intermediate phenotype

5. RNA-based studies (eQTL) studies can identify variants that influence the
gene’s expression - may guide to establish causality

6. Functional annotation of cattle genome is incomplete; work (FAANG] in
progress

/. The issue of establishing causality is a challenging one - plenty of biology to
pursue
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“The more we find, the more we see, the more we come to learn.”

Sir Tim Rice, Aida, 2000
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