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Today’s Talks

• Genomic feature models
Senior Scientist Peter Sørensen

• Gene mapping in cattle: lessons learnt from genome-wide variants 
Senior Scientist Goutam Sahana, QGG, AU 

• Understanding gene by environment interactions in ryegrass 
Professor Torben Asp, Dept. of Molecular Biology & Genetics, AU

• Building genomic resources for breeding in a new species (mink)
Postdoc Zexi Cai, QGG, AU (Goutam Sahana) 



Genomic Feature Models

…..from understanding to prediction



Genomic Feature Models

Based on a simple hypothesis:

1. Causal mutations are clustered in regions on the genome defined by 
genomic features such as: 

- biological pathways
- gene or sequence ontologies
- prior QTL regions (QTL, eQTL, mQTL, pQTL, …)
- expression or methylation patterns
- protein-protein or protein-metabolite interactions …….

2. If we use a statistical model that quantifies the effect of a set of genetic 
variants defined by a genomic feature we can

- increase detection power for causal variants with small effects
- increase prediction accuracy of complex trait phenotypes 



Genomic Feature Models 

Prediction Models
• Mapping Variants to Gene Ontology Categories Improves Genomic Prediction for Quantitative 

Traits in Drosophila melanogaster. Edwards SM, Sørensen IF, Sarup P, Mackay TF, Sørensen P. 
(2016). Genetics 203 (4): 1871-1883.

• Use of biological priors enhances understanding of genetic architecture and genomic 
prediction of complex traits within and between dairy cattle breeds. Fang L, Sahana G, Ma P, Su 
G, Zhang S, Yu Y, Lund MS, Sørensen P. 2018. BMC Genomics 18(1):604

Marker Set Association Models
• MicroRNA-guided prioritization of genome-wide association signals reveals the importance of 

microRNA-target gene networks for complex traits in cattle. Fang L, Sørensen P, Sahana G, 
Panitz F, Su G, Zhang S, Yu Y, Li B, Ma L, Liu G, Lund MS, Thomsen B. 2018. Sci Rep 8:1–14

• Multiple trait covariance association test identifies gene ontology categories associated with 
chill coma recovery time in Drosophila melanogaster. Sørensen IF, Edwards SM, Rohde PD, 
Sørensen P. 2017. Sci Rep 7:2413.

Implemented in R (psoerensen.github.io/qgg)
• qgg: an R package for large-scale quantitative genetic analyses. Rohde PD, Sørensen IF, 

Sørensen P. Bioinformatics 2019



Genomic Feature BLUP Models 

Predictions in GFBLUP 

GFBLUP different weights on genomic relationships
=> differential shrinkage

Edwards et al. 2016

𝐠𝐠pred = 𝐆𝐆fvt ⋅ σf
2 + 𝐆𝐆rvt ⋅ σr
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GBLUP same weights on 
genomic relationships



Genomic Feature BLUP Models 

GFBLUP can 
increase accuracy

GBLUP

Effect of dilution
- adding non-causal SNPs to feature set

Cross validation
- 10% test and 90% train
- predictions across lines 
- repeated 50 times
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σf2 + σr2

Edwards et al. 2016.



Genomic Feature BLUP Models 

hf2 =
σf2

σf2 + σr2
hr2 =

σr2

σf2 + σr2

If “diluted” difficult to reliably estimate 
genomic parameters => lower accuracy 

High correlation 
between Gf and Gr

Edwards et al. 2016



Genomic Feature BLUP Models

- Increased prediction accuracy provided genomic feature is enriched for 
causal variants and highly dependent on:

- heritability (h2 and hf2)

- relatedness/LD

- dilution

- Small increase (1-3%) within breeds (Danish Duroc/Danish Holstein/Danish 
Jersey) 

- Larger increase (5-20%) across breeds (Danish Holstein -> Danish Jersey)

- Largest increase (10-50%) in populations of unrelated individuals (Drosophila 
(DGRP) and humans (UK Biobank))

Edwards et al 2016, Sarup et al. 2016, Fang et al. 20l7, Rohde et al 2018



Marker Set Association Models

- GFBLUP (and Bayesian GF) models are computationally intensive

- Patterns derived from single-marker statistics can reveal associations 
between a set of genetic markers (genomic feature) and a complex trait.

- Marker set tests are computationally fast and powerful modelling approaches 
that allow us to rapidly analyze many different layers of genomic features

- Improved inference and prediction accuracy of GFBLUP may be achieved by 
identifying genomic regions enriched for causal genetic variants.

Rohde et al. 2016,2018, Fang et al 2017, Sørensen et 2017



Marker Set Association Models

Marker set statistics from the single marker statistics such as:

1. Count number of single marker test statistics above a certain threshold

Tcount = ∑i=1
nF I ti > t0

2. Sum of all single marker test statistics

Tsum = ∑i=1
nF ti

Rohde et al. 2016, Sørensen et 2017



Marker Set Test Association Models

Strong relationship between enrichment score (-log(p)) and 
prediction accuracy (PA) of GFBLUP model

Simulated data example



Genomic Feature BLUP Models

GFBLUP models in dairy cattle – study 1

Use of biological priors enhances understanding of genetic architecture 
and genomic prediction of complex traits within and between dairy 
cattle breeds Fang et al. 20l7 Genet Sel Evol 49:1–18.

- Compare GBLUP and GFBLUP models

- Within and across breed prediction 

- Danish Holstein/Danish Jersey dairy cattle breeds

- Gene Ontology terms used as genomic features (SNP->gene->GO term)

- Milk production and mastitis traits



Genomic Feature BLUP Models

Fang et al. 2017

Top-ranking GO terms



Marker Set Association Models

Fang et al. 2017

Within breed prediction
- Danish Holstein
- GBLUP<->GFBLUP
- Small increase (<2%)
- Similar trend across 4 traits

Relationship between enrichment score and prediction accuracy



Marker Set Association Models

Across breed prediction
- Danish Holstein => Danish Jersey
- GBLUP<->GFBLUP
- Larger increase (<20%)

Relationship between enrichment score and prediction accuracy



Genomic Feature BLUP Models

GFBLUP models in dairy cattle – study 2

MicroRNA-guided prioritization of genome-wide association signals reveals the 
importance of microRNA-target gene networks for complex traits in cattle.

Fang et al. 20l8 Sci Rep 8:1–14.

MicroRNAs (miRNA) are key modulators of gene expression and so act as 
putative fine-tuners of complex traits phenotypes. 

Hypothesis: Causal variants of complex traits are enriched in miRNAs and 
miRNA-target networks



Genomic Feature BLUP Models

- Enrichments analysis of association signals in miRNAs and their miRNA-target 
networks

- 750 bovine autosome miRNA genes expressed in different tissues (miRbase)

- SNPs 5kb up-/downstream

- In silico prediction of miRNA targets

- Genome-wide association study (GWAS) for seven functional and milk 
production traits 

- Imputed sequence variants (13~15 million) 

- >10,000 animals from three dairy cattle breeds, i.e., Danish Holstein (HOL), 
Nordic Red Cattle (RDC) and Danish Jersey (JER). 



Marker Set Association Models

Genomic regions harboring miRNA genes significantly (P < 0.05) 
enriched with GWAS signals for milk production traits and mastitis



Marker Set Association Models

- 55 significant miRNA-target networks were 
detected for seven traits

- 12 miRNAs were involved in several traits 

- genes differentially expressed in response to 
mammary gland infections enriched in the miRNA-
target networks associated with mastitis. 

- findings consistent across three breeds. 

Genomic regions harboring miRNA-target gene networks significantly 
(P < 0.05) enriched with GWAS signals 



Summary

• GF prediction models can increase the accuracy of genomic 
predictions provided feature is enriched for causal variants

• Marker Set Association Models can reveal genomic features 
associated with complex traits and can be used to improve GF 
prediction models

• GF models applied to a range of features and traits 
- GF models in dairy cattle (GO, GWE, miRNA) (Fang et al. 2017, 2018)
- GF models in pigs (Animal QTLdb) (Sarup et al. 2016) 
- GF models in in fly (GO, ppi, QTL) (Rohde et al. 2016/3017/2018; Sørensen et 

al.2017) 
- GF models in humans (GO, ppi, QTL) (Rohde et al. 2016/2018; Sørensen et al.) 
- GF models for GxG and GxE in fly (Rohde et al. 2017, Morgante et al.) 

• Models implemented in R (psoerensen.github.io/qgg)
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Data 

- Molecular phenotypes (e.g. transcriptome, proteome,metabolome, 
methylome) associated to the traits/diseases of interest

- Molecular-interaction maps that provide insight into the structural 
and functional organization of the genomes

Encyclopedia of DNA 
Elements (ENCODE)

FAANG

Whole-genome sequences and multiple novel trait phenotypes from 
large numbers of individuals from multiple populations



Research Focus

Develop statistical models that can use prior biological information

- increase prediction accuracy of phenotypes or genetic predisposition
- provide novel insights into the genetic basis of the traits

Phenotype = Genome + Metabolome +Transcriptome+…+ residual 

• Rapid accumulation of biological information in database
• Genetic architecture (few large, many small effects, gene by gene,…..)

Difficult to detect
“Easy” to detect using methods 
that allow for differential 
shrinkage (e.g. Bayesian mixture 
models).



Research Focus

Want to better understand genetic architecture of complex traits
- disentangle genetic variation 
- disentangle genetic correlation

What is the contribution of different types of variants?
- rare versus common versus structural variants
- functional variants

What is the importance of type of effect?
- additive versus non-additive variance (GxG, GxE)

How do we reliably quantify these contributions?
- which factors influence inference?
- can we partition genomic (co)variance?
- what happens under selection?
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