

Break-even genetic correlation related to GxE¹ using genomic selection

Lu Cao

QGG, MBG, AU, DK

1. GxE: Genotype by environment interaction

General framework

Environment 1 (E1) Environment 2 (E2) 0 2 environments (equal size) Poly-BLUP Within-env selection Within-env selection 20 discrete generations *∂* : 50, genotyped, 20 ♀ ♂: 50, genotyped, 20 ♀ Single-trait breeding goal \mathcal{Q} :1000, 3 progenies Q:1000, 3 progenies $GxE(r_{g(env1,env2)})$ 5 **BLUF** Breeding goal \geq Env 1: $H = 1 \times G_{T_1} + 0 \times G_{T_2}$ All animals genotyped Env 2: $H = 0 \times G_{T_1} + 1 \times G_{T_2}$ Across-env selection T_1 : performance in env 1 ♂ 50, 20 ♀(E1) (E2) ♂ 50, 20 ♀ T_2 : performance in env 2 Q :1000, 3 progenies \mathcal{Q} :1000, 3 progenies Main tool: ADAM (20 replicates), 20 R Generation Fig. Framework of the simulation experiment (

Results

Proportion of foreign breeding sires used in environment 1 (h²=0.25)

Results

Annual rate of inbreeding and genetic gain for different r_a scenarios (h²=0.25)

 ΔF : average annual rate of inbreeding depression

 $\Delta G_1 / \Delta G_2$: average annual genetic gain of trait performance in environment 1/2

Genetic gains of performances increased as r_g increased, and rate of inbreeding also behaved better as r_g increased

Break-even genetic correlation related to GxE using genomic selection

Lu Cao

Supervisor: Anders Christian Sørensen Thanks for atterstigenvisor: Morten Kargo Jørn Rind Thomasen

Acknowledgements to Mark Henryon, Huiming Liu, Margot Slagboom

