Estimation of non-additive variance components and SNP effects in five dairy cattle breeds

Andrew Marete

The Premise

- Milk production traits are affected by many genes, many with a small effect and some with a major effect, thus complex traits
- Complex traits are regulated by complex interplay between multiple genes
- Theoretically, these genes can interact
- Interaction can be explained as non-additive genetic variance (NAGV)
 - 1. same locus interaction (dominance deviation)
 - 2. different loci interaction (epistatic variance)

The challenge

- Non-additive genetic variance (NAGV) is usually omitted in Genomic Selection (GS) and when estimating life-time merit of cows
- GS is based on additive effects of sire
- Especially the case when reference population is made of progeny tested bulls
- But cows with own performances are becoming more popular as a resource of choice for GS
- If NAGV is substantial, it can ameliorate the life-time merit of cows if considered in addition to additive variation

The promise

For this study

000000000000

INPUTS Phenotypes Genotypes

OUTPUTS Non-Additive Genetic Variances

00000000000

Step 1 GWAS

INPUTS Phenotypes Gen<u>otypes</u>

OUTPUTS Non-Additive Genetic Variances

00000000000

Genotypes

OUTPUTS Non-Additive Genetic Variances

Data

Phenotypes	Genotypes		
/ield Deviation: Milk, Protein, Fat			
1,000	Genotyped with 50k SNP chip		
	• 6,132 SNPs selected from whole		
20,000	genome sequence		
	All imputed to 50k density		
16,000			
10,000			
12,000			

Selection of SNP with Major Effect

$$var(\mathbf{y}) = \mathbf{G}\sigma_g^2 + \mathbf{I}\sigma_{\varepsilon}^2$$

• 539 SNP with major Effect

Non-additive models

00000000000

Symmetric marker coding

W _{ij}	Locus k		
Locus j	AA	AB	BB
AA	1	0	-1
AB	0	0	0
BB	-1	0	1

Non-additive models

- Chain=200k, burn=50k, skip=0.5k
- Metropolis-Hastings sampler (a)

Non-additive models

- Chain=200k, burn=50k, skip=0.5k
- Bernoulli distribution

Model Convergence

00000000000

MonteCarlo Coefficient of variation $= \frac{\text{Time Series SE}}{\text{Parameter Mean}}$

Model Convergence

MonteCarlo Coefficient of variation $= \frac{\text{Time Series SE}}{\text{Parameter Mean}}$

Model Convergence

Heritability

00000000000000

variation in a trait due to variation in genetic factors as explained by SNP

Dominance

Heritability

000000000000

SNP x SNP

Allele Substitution Effect

000000000000

SNP x SNP effects

- 1. Across breeds same trait
- 2. Within breed different traits

Allele Substitution Effect

SNP x SNP effects

000000000000

1. Across breeds same trait

Allele Substitution Effect

SNP x SNP effects

000000000000

2. Within breed different traits

Conclusion

0000000000000000

SNP with major effect including those selected from whole genome sequence explain non-additive variation

This interaction matrix can augment the normal GRM when predicting breeding accuracies

Thank you for your attention

Any questions?