

BayesAS and GBLUP models for genomic selection in Mink

T. Villumsen¹, G. Su¹, Z. Cai¹, B. Guldbrandtsen¹, T. Asp¹, G. Sahana¹, M.S. Lund¹

¹ Department of Molecular Biology and Genetics, Aarhus University (DK).

Genomic tested mink

Foulum brown line

Phenotypes

- Weight, quality, under wool density, silketness
- Pelt length, pelt quality, pelt density, pelt silketness

Genotypes

- 1800 mink
- 28,336 markers

Accuracies and Conclusions

5-fold cross validation, 2014

Trait	ST-GBLUP	MT-GBLUP	ST-BayesAS	MT-BayesAS
Live weight	0.490	0.500	0.516	0.523
Pelt length	0.480	0.489	0.618	0.624

- Relatively high accuracies
- BayesAS better than BLUP
 - Indicates genes with large effects
- Not a clear tendency that MT is better than ST
 - We might have to few data