# Initiating genomic selection in tetraploid potato

Elsa Sverrisdóttir

Department of Chemistry and Bioscience

GenSAP meeting 15. November 2017





### Potatoes

- Third most important food crop worldwide
- 380 million tons produced yearly
- Nutritious: rich in carbohydrates, antioxidants, vitamins, iron
- **Space-efficient**: produce twice the amount of calories per hectare compared to cereals
- Autotetraploid, highly diverse, heterozygous
- Diseases and pests late blight (kartoffelskimmel)
- Fertilisers and pesticides
- Lack of breeding gain
- Slow breeding cycle: 10-15 years to develop a new variety





### Overall aim

- Construct genomic prediction statistical models for important agricultural traits
- Investigate prediction performance across different populations of tetraploid potato
- Traits:
  - Starch content/dry matter content
  - Chipping quality (colour of chip after frying)
  - Yield
  - Late blight resistance
- Populations:
  - Main: MASPOT population: 762 offspring from 18 parents
  - Test panel DK: 74 elite cultivars and breeding clones (+ 18 parents)
  - Test panel UK: 292 elite cultivars and breeding clones





### Methods

- Genotyping-by-sequencing with *Ape*KI
- Illumina sequencing: HiSeq 2500
- Statistical models in R: **GBLUP**, BayesA, BayesC
- Correction of phenotypic data:  $y_{ijk} = \mu + genotype_i + year_j + location_k + e_{ijk}$

| Christen and a grant of the second of the se |                               |             |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------|-------------|
| A: Gene density ranging                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Filtering step                | Markers     |
| between 0 and 150 genes/Mb                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Raw                           | 3.4 million |
| B: Average coverage and<br>distribution of filtered<br>markers in 1 Mb bins,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | MAF >1%,<br>missing data <50% | 505,321     |
| normalized to the highest value                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Coverage >5                   | 186,757     |
| O 20 mb                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Coverage <60                  | 171,859     |
| <sup>α</sup> μ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                               | 5           |

### Dry matter predictions

| Prediction set /    | MASDOT      | Tost papel DV  | Test papel UK  | Combined    |
|---------------------|-------------|----------------|----------------|-------------|
| Training set        | MASPOT      | Test parter DK | Test paller UK | Combined    |
| MASPOT [755]        | 0.74 [1.04] | 0.67 [1.41]    | 0.62 [1.55]    | 0.75 [0.98] |
| Test panel DK [80]  | 0.71 [1.91] | 0.82 [1.49]    | 0.63 [2.85]    | 0.83 [1.07] |
| Test panel UK [290] | 0.57 [1.64] | 0.37 [2.20]    | 0.72 [1.58]    | 0.76 [1.32] |



# Chipping quality predictions

| Prediction set /    | MASDOT      | Test papel DV  | Test papel UK  | Combined    |  |
|---------------------|-------------|----------------|----------------|-------------|--|
| Training set        | MASPOT      | Test parter DK | Test parter UK | Combined    |  |
| MASPOT [524]        | 0.56 [1.09] | 0.35 [1.32]    | 0.30 [0.31]    | 0.55 [0.80] |  |
| Test panel DK [40]  | 0.48 [1.76] | 0.17 [1.21]    | 0.42 [0.63]    | 0.39 [0.77] |  |
| Test panel UK [290] | 0.43 [2.04] | 0.28 [3.79]    | 0.79 [0.93]    | 0.79 [0.86] |  |



Heritability (pedigree) for MASPOT population
➢ Chipping quality: 78%
➢ Dry matter content: 90%

15 November 2017



## GWAS: Genome-wide association study

 $y = \mathbf{1}\mu + x\beta + g + e$ 

- $\boldsymbol{x}$ : marker genotype vector  $\boldsymbol{\beta}$ : marker effect
- →p-values for each marker position
- →FDR: significance threshold
- →372 SNPs for chipping quality
- →612 SNPs for starch content



| Trait / Test set | Training set | Maultour           | GBLUP       |      |  |
|------------------|--------------|--------------------|-------------|------|--|
|                  |              | Warkers            | Correlation | Bias |  |
| Chipping quality |              |                    |             |      |  |
| Test panel [30]  | MASPOT       | All [171,859 SNPs] | 0.30        | 1.47 |  |
| Test panel [30]  | MASPOT       | GWAS [372 SNPs]    | 0.17        | 0.29 |  |
| Test panel [30]  | $Combined^*$ | All [171,859 SNPs] | 0.37        | 1.32 |  |
| Test panel [30]  | $Combined^*$ | GWAS [372 SNPs]    | 0.30        | 0.63 |  |
| Starch content   |              |                    |             |      |  |
| Test panel [63]  | MASPOT       | All [171,859 SNPs] | 0.42        | 1.26 |  |
| Test panel [63]  | MASPOT       | GWAS [612 SNPs]    | 0.11        | 0.19 |  |
| Test panel [63]  | $Combined^*$ | All [171,859 SNPs] | 0.65        | 1.04 |  |
| Test panel [63]  | Combined*    | GWAS [612 SNPs]    | 0.34        | 0.48 |  |



### Marker number



15 November 2017

### Marker number



DENMARK

15 November 2017

### Conclusions

- Chipping quality and starch content/dry matter content can be predicted with moderate to high accuracy within the same population
- Low to moderate prediction accuracies are obtained across populations with large biases
- Maximal prediction accuracy could be obtained for all populations simultaneously if relevant genotypes are included in the model
- Predictions could not be improved by only using significant SNPs selected with GWAS
- SNPs selected with GWAS in one population are not (necessarily) significant for other populations



### Implementing genomic selection in tetraploid potato



# Acknowledgements

Kåre Lehmann Nielsen, Aalborg University Functional Genomics group

Torben Asp, Aarhus University UNIVERSITY Stephen Byrne, Aarhus University (Present: Teagasc, Ireland) Luc Janss, Aarhus University

Glenn Bryan, The James Hutton Institute



Hanne Grethe Kirk, LKF Vandel (Present: Danespo) Jens Kristian, LKF Vandel (Present: Danespo)







Danish Council for Strategic Research

# THANK YOU FOR YOUR ATTENTION



DENMARK