Predicting the effect of reference population on the accuracy of across and multi breed genomic prediction

Irene van den Berg¹, THE Meuwissen², IM Macleod³, and ME Goddard^{1,3}

¹Faculty of Veterinary & Agricultural Science, University of Melbourne, Victoria, Australia; ²Norwegian University of Life Sciences, Ås, Norway; ³Agriculture Victoria, AgriBio, Centre for AgriBioscience, Bundoora, Victoria 3083, Australia

Introduction

- Accuracy of genomic prediction usually estimated by cross-validation ->
 requires dataset & analyses
- It would be useful to predict the benefit of multi-breed reference populations, before having the full dataset / analysis
- Formulae to predict accuracy based on size reference population, heritability and number of independent chromosomal segments (Me)
- Difficult to estimate Me, especially in a multi/across breed setting

Introduction

- Accuracy of genomic prediction usually estimated by cross-validation -> requires dataset & analyses
- It would be useful to predict the benefit of multi-breed reference populations, before having the full dataset / analysis
- Formulae to predict accuracy based on size reference population, heritability and number of independent chromosomal segments (Me)
- Difficult to estimate Me, especially in a multi/across breed setting

Objective

Predict the accuracy of a multi breed reference population

Data

- ~ I million sequence variants, simulated phenotypes
- Reference population:
 - 7,878 Holstein
 - 2,323 Jersey
 - Holstein + Jersey
- Validation populations:
 - 582 Holstein
 - 551 Jersey
 - 870 Red Holstein
 - 114 Australian Red

Predicting the accuracy of the H+J reference population

I) Estimate accuracies of single breed H and J reference populations by cross-validation, use those to estimate θ ,

by solving
$$r = \sqrt{\frac{\theta}{1 + \theta - r^2 h^2}}$$

2) Add up single breed θ 's to predict the accuracy of the multi breed reference population: $r_{H+I} =$

$$\sqrt{\frac{\theta_{H+}\theta_{J}}{1+\theta_{H}+\theta_{J}-r_{H+J}^{2}h^{2}}}$$

Results

Results

Results

Conclusion

 θ 's obtained by cross-validation for single breed reference populations can be useful to predict the accuracy for a multi breed reference population