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Introduction
Genomic Prediction (GP) is found to work well with medium 
density markers 
But

- this is true for populations of small effective size (ie a 
limited number of independent chromosomal segments)

- when candidates are strongly related to the reference 
population, and there is a rapid loss in persistency when this 
relationship decreases

- it has a limited efficiency for across breed prediction, and 
too low for practical purpose, except when populations are 
strongly related

In conclusion, present methods rely on long range LD with causal 
variants and/or overall relationship
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Whole Genome Sequences will be available
at a large scale

For us, WGS corresponds to a complete genotyping process 
(eg, ~25M variants vs 50k with a chip)

Sequencing cost is decreasing

Cost still too high for all individuals at medium-high coverage, but 
low enough for a few thousands of individuals, especially in 
consortia

But imputation is efficient and cost-effective
(with some limitation, however, with low MAF markers)
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Imputation accuracy
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Whole Genome Sequences will be available
at a large scale

An alternative with low coverage sequencing:
(eg, Hickey et al; NRGene)

1) Deep sequencing and phasing for a collection of individuals, 
describing most haplotypes present in the population

2) Determination of tag-SNPs for each haplotype
3) Low-coverage (0.1 to 1X) of many individuals, therefore at low 

cost
4) Fast sequence reconstruction based on tag-SNPs 
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What can we do with Whole Genome Sequences

WGS include all variants
(in fact, not fully exact: calling errors, imputation errors, 
structural variants…)

Therefore WGS should include causal variants

Assuming they are known, including all causal variants directly in 
predictions would provide the highest accuracy.

They are there, but as a needle in a hay stack

=> Can we find them ?
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WGS are useless without variant selection

No gain in accuracy of sequenced-based GBLUP 
over 50k based GBLUP

Too much noise generated by millions of useless variants, to take 
advantage of the causal variants

Another interpretation: genomic relationship matrices are very 
similar

Necessity to extract the useful information, ie causal variants or 
very close variants, 
And to discard the other variants which are source of noise.
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Expected gain in accuracy within population

Studies by simulation, assuming causal variants are known

Accuracy is (obviously) maximum with causal variants

But little is lost with neighbor variants, even a some distance
Markers capture most of genetic variance due to long range LD
No/little improvement over one generation

But a better persistency is expected, due to lack of recombination 
(any publication?)

Van den Berg, G3
250 variants
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Expected gain in accuracy across populations
Accuracy is maximum with causal variants

It is less than 1, due to fixed causal variants

Rapid decay in accuracy with distance due to LD decay

(NB: Optimistic situation: constant and additive only effects)

Van den Berg, G3
250 variants
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Question

Are we able to identify or at least to accurately map the causal 
variants?
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Strategy for mapping

1. Through GWAS

• Imputation at the sequence level

• GWAS at the sequence level on large populations

• Joint analysis to test for the lack of residual effect in the region

• Across breed GWAS or meta-analysis to improve resolution

• Functional annotation to orient variant selection

• Possibly, haplotypic analysis
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Example
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Material & methods: animals

8,752 cows genotyped with the 50k Beadchip
and with milk composition phenotypes

2,967 
Montbéliardes

MON 

2,737 
Normandes

NOR 

3,048
Holstein

HOL
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MIR  Prediction

Trait
Relative 

estimation 
error (%)

R²

C14:0 4 0.97

β Casein 4 0.90

C18:0 10 0.89

αs1 Casein 6 0.81

Omega 3 13 0.89

N=450
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SAT
C4:0
C6:0
C8:0

C10:0
C12:0
C14:0
C16:0
C18:0

UNSAT
MONO

C18:1cis9
C18:1cis12

C18:1t11t10
TotC18:1

TotC18:1cis
TotC18:1trans

POLY
C18:2cis9trans11

C18:2cis9cis12
C18:3n3
TotC18:3
Omega 3
Omega 6

23 Fatty acids and 6 proteins

αs1 casein
αs2 casein
β casein
κ casein

α lactalbumin
β lactoglobulin
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Material & methods: genotypes & imputation

Imputation in two steps with
FImpute (Sargolzaei et al., 2014)

Step 1

Bovine SNP50

Bovine HD

Whole genome
sequence

Step 2

Within breed imputation
Within breed RP

Within breed imputation
One across breed RP

Reference populations (RP)

Within breed, 
HD genotyped bulls

522 MON
546 NOR
776 HOL

Across breed,
WGS of 1147 bulls 

(«1000 Bull Genomes», RUN4)
including 28 MON + 24 

NOR + 288 HOL

27 millions of sequence variants imputed for 8752 cows
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NOR HOLMON

BTA 6 – κ casein

~87 Mb => in the casein genes cluster

GWAS results
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MON NOR HOL

BTA 11 – β lactoglobulin

~103 Mb => close to LGB (PAEP) gene

GWAS results
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NOR HOLMON

BTA 20 – α lactalbumin

~58 Mb => ANKH gene

GWAS results
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BTA 20
α lactalbumin
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Results

Nearly all major peaks are on genes

SLC37A1, MGST1, ABCG2, CSN1S1, CSN2, CSN1S2, CSN3, PAEP, 
DGAT1, AGPAT6, ALPL, ANKH, PICALM affect milk protein

In majority out of the coding sequences
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Strategy for mapping

2. Multi-marker analysis with Bayesian methods
2.A. At the full sequence level, with BayesR
• A computational challenge
• Some improvements made by the Australian colleagues 

(T Wang, I Van Den Berg)
• Burn-in replaced by EM
• SNP discarding (remove if not selected after N iterates)

2.B. At the chromosomal region level
• Account for the rest of the genome (pedigree, 50k)
• BayesC over 1-2 Mb including a QTL
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BTA Trait Log10(1/p) max
MON – NOR – HOL 

Bounds of the region
analyzed (Mb) 

1 κ casein 10 – 9 – 13 143 – 145
2 αs2 casein 8 – 12 – 7 130.5 – 132.5
6 κ casein 24 – 22 – 46 86.5 – 88.5

11 β lactoglobulin 279 – 255 – 226 102 – 104
20 α lactalbumin 64 – 44 – 34 57 – 59

Some GWAS QTL results analyzed in detail

QTL shared between breeds

Proteins
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Bayesian analyses

Candidate variants were selected according to their probability of 
inclusion (based on 100,000 iterations, burn-in=20,000, thin = 50)  

A difficulty: due to very high LD, inclusion probability of a region
may be distributed over many linked variants, 

and can be low for individual variants

Inclusion probabilities were summed over 5kb windows to detect
the largest signals, and 

candidate variants were searched within the best windows



Use of sums of Pi per 5 kb intervals to detect the strongest signals

40 variants in the strongest regions between 87,390 and 87,410 
Mb, including 10 in the regulatory region of CSN3 gene.

BTA6 – 86 – 88.5 Mb

Individual SNPs Sum of Pi over 5kb windows

Bayesian analysis results: BTA6, κ casein
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Bayesian analysis results: BTA17, C4:0
Sum over 5kb windows Inclusion probability for each SNP

25 markers in very high LD, with similar probabilities, in the BRI3BP gene (all intronic)
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Summary of results (fatty acids)

BTA Bounds of
peak (kb) Trait Candidate 

variants Genes Annotation of 
variants in genes

5 93,940-93,955 SAT 4 MGST1 Upstream

1,620-1,625 SAT, 
POLY

1 GPT 3’UTR

14 1,790-1,870 SAT 4 DGAT1 Various

2,700-2,720 POLY 4 CYP11B1 Upstream / 
Downstream

17 53,075-53,085 C4:0 22 BRI3BP Intronic

19 51,360-51,385 C12:0 6 FASN Upstream

27 36,205-36,220 C16:0 4 AGPAT6 Upstream
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BTA Bounds of peak
(kb) Trait Candidate 

variants Genes Annotation of 
variants in genes

1 144,395-144,405 κ casein 30 SLC37A1 intronic

2 131,810-131,835 αs2 casein 1 ALPL intronic

6 87,390-87,410 κ casein 10 CSN3 regulatory regions

11 103,285-103,315 β lactoglobulin 20 LGB

1 missense (Ganai et al, 
2009)
19 in regulatory
regions

20 58,410-58,440 α lactalbumin 10 ANKH 10 intronic

Summary of results (proteins)
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A nice confirmation tool, the custom chip
- Chips can be customized
- Large scale use for genomic selection (eg > 200 000/y in France)
- Add-on with candidate variants => true genotypes with very 

limited error rate
- Estimation of allelic frequencies in different breeds
- Very nice tool for major genes/genetic defects/embryonic 
lethals…, but it is another subject
- Unfortunately, young animals do not have phenotypes

o Wait several years for performances
o Backward imputation of animals genotyped with another 

chip => Low imputation error rate, because of the large reference 
population
- Confirmation GWAS: do candidate variants explain the QTL?
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Content of the custom chip
Version 7 presently

- 10k for standard genomic prediction => imputation to 50k
- A number of single gene tests 
- A research part for confirmation studies

o Variants with strong deleterious annotation
o Variants believed to have a regulatory function
o Breakpoints of structural variants
o Peaks of GWAS (~2000 SNP)

50% from 4 main traits (protein, SCS, fertility, locomotion)
50% from other traits

- Straightforward switch from research status to production status
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Confirmation of SNP

19675 Montbéliarde cows with αs1-casein prediction from MIR spectra

MP Sanchez, WCGALP
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Do we improve genomic predictions with
these variants

- Tested only within breed, preliminary results on 
production, udder health and fertility traits

- Not fantastic !

- Some gain with 50k + add-on

- Limited results explained by
- Good efficiency already achieved
- Limited number of QTL
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Five simulated Scenarios (Croiseau, Wcgalp)
• PEAK: 43,800 most significant SNP, each selected in 
windows of 300 SNP
• COVER: The genome was divided in 43,800 segments. In 
each segment, the SNP with a MAF higher than 1% and the 
lowest p-value was retained.
• COVER2: Same as COVER but the SNP was required to 
must be located in a gene (if any).
• OPT_QTL: Potential replacement of a 50k marker by the 
best marker (selected on p-value, MAF) in the same 1Mb-
interval. 
• Bottom-Up: Replacement of the 50k markers with zero 
effect by the best sequence SNP

=> No clear improvement (Croiseau, WCGALP)
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Conclusion

- WGS are here

- Mapping methods give access to the most important 
variants

- Prediction methods still need to be improved to take full 
advantage of this information
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