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* Use of genotyping by sequencing

* Disentangling genomic covariance

* Biases in breeding values



CENTER FOR QUANTITATIVE
GENETICS AND GENOMICS G
[ ]
Sequencing
-

* Whole genome sequencing at high depth
e Limited samples (10’s —100’s)
* Other samples are imputed to full sequence
e Rare allele imputation poor
 Whole genome sequencing at low depth (<1x)

* Larger samples
* Good haplotype reference needed (HapMap in humans)

* Reduced genome sequencing

* Larger samples
* Rare alleles available
* Low depth causes missing data and bias
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Determining a heterozygote genotype

(AB) by sequencing

mmm

50% 25% 12.5% 6.3% 3.1%
AB 0% 50% 75% 87.5% 93.8%
BB 50% 25% 12.5% 6.3% 3.1%
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Using low-depth genotyping by

sequencing

* Using as low as 1 read works!

* On average the genotype is OK

* A phenotype has more value than the ‘damage’ of inaccurate
genotype

 Multiplexing and doing more samples at lower depth attractive

* But

* |naccuracy in genotype causes bias
* Under-estimated allele effects in GWAS;
* over-estimation of genomic variances

* No reads = missing genotype!
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Under-estimation of allele effect using GBS data for GWAS
From: Ashraf et al., Theor. Appl. Genet., 2014
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At constant sequencing, highest power to detect a

significant association at low depth
From: Ashraf et al., Theor. Appl. Genet., 2014
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Bias from low-sequencing depth in
computed genomic relationships
Cericola et al., PAG conference 2015

Off-diagonals are biased with
sample missing rate when using
standard VanRaden adjustment

Diagonals are biased with
sample sequencing depth
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Lessons learnt from genotyping

by sequencing

* Great tool for genotyping

— Cost effective, competitive with arrays

— Directly applicable to tetraploids and pools
* Use allele-frequency estimates instead of genotypes

* Biases due to genotype inaccuracy, but we learn
to deal with it

* Implications (in animals)

— For species without genome sequence and arrays
— Similar biases for imputed genotyped?
— Better missing rate adjustment
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Disentangling covariance between traits:

mapping SNPs to different correlation structures
Janss, WCGALP Conference 2014

* 748 F2 Mice

* Body Weight, Feed Intake and Feed Efficiency
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* Map SNPs to g1 (BW+, FlI+) and g2 (BW+, FI-)

using SNPs and mixture model in g1, g2
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Two genomic values explaining

BW, Fl, FE

SNPs mapping to gl
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Two genomic values explaining

BW, Fl, FE
Correlations
Trait gl g2
BW 0.34 0.34
FI 0.40 0.08

FE -0.07 0.49
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Real (agricultural) applications

* Pooling data and prediction across breed
— Consider traits in different breeds as different but
correlated traits
— Disentangle SNPs that contribute to correlation
and those that are breed specific

e Multi-environment data

— Consider traits multi-trait
— Map common and environment specific SNPs
— Breeding values for all environments
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Learning about biased breeding

values

Unbiased predictions

Can compare between old/new,
genotyped/non-genotyped,
different accuracies, etc.

110 120 1

Biased predictions

Can not compare to anything
outside the group
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Data design and bias

= . .
Trait = block + genotype + re5|dua

Trait = block + genotype + residua

. : Biased
Trait = block + genotype + re5|dua
Trait = block + genotype + Parent x Parent + re
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Biased breeding values

* Getting the scale wrong can be expensive!
* Bias can arise from

— Confoundment genotypes x environments
— Pre-selection, preferential treatment

* Can learn about source of bias by looking at
correlations of genotypes / blocks / years etc.

— If you analyse all data in one step



Useful cross-fertilization between animals and
plants

Use of sequencing for genotyping
Refinements in field-data analysis

Multi-trait models for across breed & GxE

Thank you



