

Genomic Prediction: from animals to plants and back

Luc Janss
GenSAP SFA2 leader "genomic prediction"

Outline

- Use of genotyping by sequencing
- Disentangling genomic covariance
- Biases in breeding values

Sequencing

Whole genome sequencing at high depth

- Limited samples (10's 100's)
- Other samples are imputed to full sequence
- Rare allele imputation poor

Whole genome sequencing at low depth (<1x)

- Larger samples
- Good haplotype reference needed (HapMap in humans)

Reduced genome sequencing

- Larger samples
- Rare alleles available
- Low depth causes missing data and bias

Determining a heterozygote genotype (AB) by sequencing

Reading	1 Read	2 reads	3 reads	4 reads	5 reads
AA	50%	25%	12.5%	6.3%	3.1%
AB	0%	50%	75%	87.5%	93.8%
ВВ	50%	25%	12.5%	6.3%	3.1%

Using low-depth genotyping by sequencing

Using as low as 1 read works!

- On average the genotype is OK
- A phenotype has more value than the 'damage' of inaccurate genotype
- Multiplexing and doing more samples at lower depth attractive

But

- Inaccuracy in genotype causes bias
 - Under-estimated allele effects in GWAS;
 - over-estimation of genomic variances
- No reads = missing genotype!

Under-estimation of allele effect using GBS data for GWAS From: Ashraf et al., Theor. Appl. Genet., 2014

At constant sequencing, highest power to detect a significant association at low depth

From: Ashraf et al., Theor. Appl. Genet., 2014

(Sample size × Seq.depth)

Bias from low-sequencing depth in computed genomic relationships Cericola et al., PAG conference 2015

Diagonals are biased with sample sequencing depth

Off-diagonals are biased with sample missing rate when using standard VanRaden adjustment

Lessons learnt from genotyping by sequencing

- Great tool for genotyping
 - Cost effective, competitive with arrays
 - Directly applicable to tetraploids and pools
 - Use allele-frequency estimates instead of genotypes
- Biases due to genotype inaccuracy, but we learn to deal with it
- Implications (in animals)
 - For species without genome sequence and arrays
 - Similar biases for imputed genotyped?
 - Better missing rate adjustment

Disentangling covariance between traits: mapping SNPs to different correlation structures Janss, WCGALP Conference 2014

- 748 F2 Mice
- Body Weight, Feed Intake and Feed Efficiency

$$\begin{cases} \mathsf{BW} = Xb_1 + r_1g_1 + r_4g_2 + e_1 \\ \mathsf{FI} = Xb_2 + r_2g_1 + r_5g_2 + e_2 \\ \mathsf{FE} = Xb_3 + r_3g_1 + r_6g_2 + e_3 \end{cases}$$

 Map SNPs to g1 (BW+, FI+) and g2 (BW+, FI-) using SNPs and mixture model in g1, g2

Two genomic values explaining BW, FI, FE

Interpreting SNP effects $SNP_i \stackrel{a_i}{=} g_2 \stackrel{0.047}{=} BW$

Two genomic values explaining BW, FI, FE

	Correlations		
Trait	g1 g2	2	
BW	0.34	0.34	
FI	0.40	0.08	
FE	-0.07	0.49	

Real (agricultural) applications

- Pooling data and prediction across breed
 - Consider traits in different breeds as different but correlated traits
 - Disentangle SNPs that contribute to correlation and those that are breed specific
- Multi-environment data
 - Consider traits multi-trait
 - Map common and environment specific SNPs
 - Breeding values for all environments

Learning about biased breeding values

Unbiased predictions

Biased predictions

Can compare between old/new, genotyped/non-genotyped, different accuracies, etc.

Can not compare to anything outside the group

Data design and bias

```
Trait = block + genotype + residual

Random

Trait = block + genotype + residual

Trait = block + genotype + residual

Trait = block + genotype + residual

Trait = block + genotype + Parent x Parent + res
```

Biased breeding values

- Getting the scale wrong can be expensive!
- Bias can arise from
 - Confoundment genotypes x environments
 - Pre-selection, preferential treatment
- Can learn about source of bias by looking at correlations of genotypes / blocks / years etc.
 - If you analyse all data in one step

Summary

- Useful cross-fertilization between animals and plants
- Use of sequencing for genotyping
- Refinements in field-data analysis
- Multi-trait models for across breed & GxE

Thank you