Prediction of causative genomic relationships using sequence data of five French and Danish dairy cattle breeds

Irene van den Berg^{1,2,3}, D. Boichard^{2,3} and M. S. Lund¹

Introduction

- Increasing number of sequences individuals
 possible to use for genomic selection
- Sequence contains causative mutations
 → increase prediction accuracy?
- Across breed: low accuracy using 50K/HD chips → insufficient linkage disequilibrium across breed?
- Low MAF variants not on SNP chips

Objective

To study the potential benefits of sequence data for the prediction of genomic relationships

Different scenarios:

- Within and across breed
- Number of causative mutations
- Distance between causative mutations and prediction markers
- Compare with 50K/HD
- MAF of causative mutations and prediction markers

Methods

Quantify loss in prediction R^2 following de los Campos et al. (2013):

R² if markers are not in perfect LD with causative mutations

regression coefficient genomic relationship at causative mutations

b: $|\overline{G}_{n+1,i}| = |b_{n+1}G_{n+1,i}| + |\xi_{n+1,i}| \qquad (i=1,\dots,n)$ genomic relationship at prediction markers between individual n+1 and individual i residuals

Methods

- Genomic relationship matrix at causative mutations
 - 10/50/100/250 randomly sampled variants
- Genomic relationship matrix at prediction markers
 - 50K / HD: SNP on 50K / HD chip
 - 50K / HD closest: for each causative mutation, the closest 50K / HD marker
 - Two I Kb intervals on both sides of the causative mutations, distance between causative mutations and intervals between Ib and IMb

Intervals with prediction markers

Data

- Sequences, chromosome I
- 122 Holstein, 27 Jersey, 28 Montbéliarde, 23 Normande and 45 Danish Red
- Causative mutations selected from:
 - All variants segregating in at least one breed
 - Variants with MAF ≤ 0.10
- Prediction markers selected from:
 - All variants segregating in at least one breed
 - Variants with MAF ≥ 0.10
 - Variants present on the 50K/HD chip
- Each scenario was repeated 50 times

Results – Within breed (100 causative mutations)

Results — Across breed (100 causative mutations)

 \rightarrow I-(I-b)² decreases when distance between prediction markers and causative mutations increases, faster decrease across breed

Results — Sequence & SNP chips (100 causative mutations)

Results — Sequence & SNP chips (100 causative mutations)

Results — Sequence & SNP chips (100 causative mutations)

Results — Sequence & SNP chips (100 causative mutations)

Results — Sequence & SNP chips (100 causative mutations)

Results — Sequence & SNP chips (100 causative mutations)

 \rightarrow Using all 50K/HD markers \rightarrow lower I-(I-b)² compared to sequence, but higher when only the markers closest to the causative mutations are used

Results – Number of mutations (across breed)

Results - MAF (100 causative mutations)

— within breed

--- across breed

Results - MAF (100 causative mutations)

Results -MAF (100 causative mutations)

Results - MAF (100 causative mutations)

Conclusions

- Use of sequence data can improve prediction R²
- Not by increasing density, but by selecting the right variants
- Larger improvement across breed than within breed
- More improvement with lower number of causative mutations
- Inclusion of rare variants only improves prediction if they are (in high LD with) causative mutations