

GenSAP

Status on GenSAP for assessment and optimisation

Huiming Liu, Tobias Okeno, Kristian Meier, Mark Henryon, Jørn Thomasen, Hadi Esfandyari, Christian Sørensen

The Danish Council for Strategic Research

What GenSAP can do for us

- Time for development of tools
- Time for uncovering and understanding mechanism underlying consequences of selection
- Both of these support the industry projects

Diminishing marginal returns from genomic selection as more selection candidates are phenotyped

T. O. Okeno, M. Henryon and A. C. Sørensen

> Hypotheses

- There is diminishing marginal return from genomic selection as more candidates are phenotyped
- Phenotyping candidates based on *a priori* information is beneficial
- ✓ There is a best distribution of phenotypes on the sexes with respect to genetic gain and inbreeding rate

ΔG , genotypic standard deviation

ΔG , genotypic standard deviation

CENTER FOR QUANTITATIVE GENETICS AND GENOMICS

ΔG , phenotypic standard deviation

Diminishing return as more candidates are phenotyped

Use of *a priori* information to select animals to phenotype is beneficial

- Mainly phenotyping sex with high selection intensity is beneficial at low phenotyping proportions
- Less intensively selected sex should also be considered at high phenotyping proportions

Specific challenges adressed in GenSAP SFA3

Extended tool box

AARHUS

- Non-additive genetic variation (<u>Hadi</u>)
- Selection across multiple environments
- Use of genomic information for handling inbreeding (<u>Huiming</u>)
- Proof-of-concept (<u>Kristian</u>)

Maximizing crossbred performance through purebred genomic selection

Hadi Esfandyari Christian Sørensen Piter Bijma

Aims

• To investigate the benefits of GS of purebreds for CP based on purebred information

• To compare separate pure line reference populations with a joint reference population

CENTER FOR QUANTITATIVE GENETICS AND GENOMICS

Predicting crossbred performance

- Predicting additive and dominance effects of each marker
- Purebred breeding value of an animal depends on allele frequency in its own breed
- Crossbred breeding value of an animal depends on allele frequency in the other breed

Performance of crossbreds

Conclusions

- Selecting the pure lines for crossbred performance increases phenotypic performance of crossbreds
- Selecting for crossbred performance increases the expression of heterosis
- If the breeds are closely related a joint reference population is beneficial

Maintenance of genetic diversity in genomic selection

Huiming Liu

Supervisors:

- Elise Norberg
- Peer Berg
- Christian Sørensen
- Theo Meuwissen

How to maintain the genetic diversity?

Putting more weight on the rare favourable alleles (WGEBV)

AARHUS

 Optimum contribution selection (OCS)

CENTER FOR QUANTITATIVE

Selection design

Genetic gain

Conclusion

The strategy that combines WAF and OCS is very promising ⁽ⁱ⁾

Genomic selection in mink (*Neovison vison*): A simulation study

Kristian Meier Anders Christian Sørensen Janne P. Thirstrup Mogens Sandø Lund

Breeding plan without genomic information

Simulation design

• Do we need to make DNA analysis on all selection candidates?

Number of DNA analysis				
Selection candidates	Number			
All	6000			
Best 10% males	300			

- How high accuracy do we get with genomic selection in mink?
 - We don't know?
 - We simulate scenarios with low, medium and high accuracy

Monetary genetic gain

Genomic selection		Total economic gain Dkr pr. female pr. year	
Accuracy	DNA analysis	V	
High	All	97	
	10 % best males	71	
Low	All	60	
	10 % best males	57 4	
Breeding plan without genomic information		54 🖌	

Genetic gain in traits

Geno	mic selection	Contribution (%) from five traits to the total economic gain				
		Litter size	Weight	Barren females	Pelt quality	Feed efficiency
Accuracy	DNA analysis					
High	All	42	19	19	0	20
	10 % best males					
		26	37	12	-5	30
Low	All	12	51	7	-8	39
	10 % best males	10	54	4	-9	41
Breeding pl ir	an without genomic nformation	4	59	2	-10	45

Conclusion

- Genomic selection increases total economic gain
- Increased genetic gain for litter size, barren females and pelt quality
- Even at low accuracy and few DNA analyses genetic gain is increased

Future work

- Evaluate different economic weights
- Cost (DNA) benefit (economic gain) analysis
- Future infrastructure supporting genomic selection

Wrap-up

- So far, we have just scratched the surface
- Recruitment allows us to speed up from January
 - PhD at NMBU started September 1st 2014
 - Post Doc jointly with SFA1 starting January 1st
 2015
 - Post Doc assisting with ADAM programming starting January 1st 2015

Specific challenges adressed in GenSAP SFA3

- Extended tool box (Huiming, Jørn, Mark, Beatriz)
- Non-additive genetic variation (<u>Hadi</u>)
- Selection across multiple environments
- Use of genomic information for handling inbreeding (<u>Huiming</u>, Gebreyohans, Tobias)
- Proof-of-concept (<u>Kristian</u>)

AARHUS