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What is a GWAS:

* Scan markers across genome to find genetic variations
associated with a particular phenotype

* Alarge number of subjects are needed because

e Effect of the causal variants are expected to be small

e High level of significance needed to pass multiple testing
correction

 Useful for finding genetic variation affecting to
guantitative and complex diseases phenotypes
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Association Studies

Direct association Indirect association
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Candidate Gene or GWAS

Hirschhorn & Daly, Nat Rev Genet 2005
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Published GWA Reports, 2005 - 6/2012
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QTL / SNP association reported in livestock

Species
Pigs
Cattle
Chicken
Sheep

Rainbow trout

QTLs or SNP associations
8402
7091
3808
789
127

http://www.animalgenome.org/cqgi-bin/QTLdb/
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What have we learned from GWAS?

100s of trait-associated genetic variants identified by
GWAS

Majority with small effect on the traits
Tiny part of heritability explained

Biological mechanism of majority of the associated
variants unclear

New insights into biological pathways controlling
complex traits
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Spectrum of disease allele effects
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Allele frequency and effect sizes for genetic variants

assoclated with breast cancer
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Missing heritabilit

Tiny part of heritability explained
e 30 loci for type 2 diabetes explain ~¥10% of heritability
Is heritability overestimated?

Disease heterogeneity - lots of different diseases with
the same phenotype

Poor tagging of rare mutations of large effect
(including CNVs)

Statistical modeling



Proportion of variation in susceptibility to

schizophrenia captured by common SNPs
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Biological effect behind variants remains unclear

e ~30% of associated variations inter-genic

 ENCODE: ‘80% of the genome has biochemical function’
 Many within-gene variations have no known function

* LD obscures the location of specific causative loci

e Reduced ability to identify function

* Pinpointing the exact causal variant in the genome remains a
major challenge
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Strongest association with intronic variants
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http://www.ensembl.org/Bos_taurus/Location/View?db=core;g=ENSBTAG00000008541;r=5:93926791-93950162;t=ENSBTAT00000011257
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Genetic heterogeneit

A mutation in APP protecting against
Alzheimer’s disease (Jonsson et al., 2012)
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normal cognition
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Gene action due to duplication in another gene

A 40 kB duplication causes hereditary mixed
polyposis syndrome (Jaeger et al., 2012)

controls
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LD obscures the location of causative mutation
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Tsunami of ‘new’ data

 Improvement in genotyping array technology
e Greater access to low-cost sequencing

e ‘New’ technologies

e Chromatin immuno-precipitation (ChIP) with NGS (ChlP-seq)
* Gene expression

e Whole exome sequencing

* RNA-seq

 Omics data
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Challenges ahead

e Structural variants poorly tagged by current SNP-chips

 Current CNV arrays only detect large variants;

* No systematic coverage of the vast number of small CNVs
(including microsatellites)

 Merging massive amount of data (WGS, omics data,
phenotypes, environment etc.)

* Greatest challenge will be to deciphering functional
mechanism and clinical relevance
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 Important advance towards deciphering genetic basis of
complex trait through GWAS despite limitations

o ‘Difficult’ types of genetic variations become mappable through
scientific and technological advances

e Explore biological meaning by combining genome-wide and
knowledge-based approaches
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