

Genome-wide association studies – lessons learned and future directions

Goutam Sahana Center for Quantitative Genetics and Genomics (QGG) Dept. Molecular Biology and Genetics Aarhus University

What is a GWAS?

- Scan markers across genome to find genetic variations associated with a particular phenotype
- A large number of subjects are needed because
 - Effect of the causal variants are expected to be small
 - High level of significance needed to pass multiple testing correction
- Useful for finding genetic variation affecting to quantitative and complex diseases phenotypes

Association Studies

Hirschhorn & Daly, Nat Rev Genet 2005

Published GWA Reports, 2005 – 6/2012

QTL / SNP association reported in livestock

Species	QTLs or SNP associations
Pigs	8402
Cattle	7091
Chicken	3808
Sheep	789
Rainbow trout	127

http://www.animalgenome.org/cgi-bin/QTLdb/

What have we learned from GWAS?

- 100s of trait-associated genetic variants identified by GWAS
- Majority with small effect on the traits
- Tiny part of heritability explained
- Biological mechanism of majority of the associated variants unclear
- New insights into biological pathways controlling complex traits

Spectrum of disease allele effects

Bush WS, Moore JH (2012) Chapter 11: Genome-Wide Association Studies. PLoS Comput Biol 8(12): e1002822.

Allele frequency and effect sizes for genetic variants associated with breast cancer

Hindorff L A et al. Carcinogenesis 2011;32:945-954

Missing heritability

- Tiny part of heritability explained
 - 30 loci for type 2 diabetes explain ~10% of heritability
- Is heritability overestimated?
- Disease heterogeneity lots of different diseases with the same phenotype
- Poor tagging of rare mutations of large effect (including CNVs)
- Statistical modeling

Proportion of variation in susceptibility to schizophrenia captured by common SNPs

Lee et al. Nat Genet 2012 44:247

Biological effect behind variants remains unclear

- ~30% of associated variations inter-genic
 - ENCODE: '80% of the genome has biochemical function'
- Many within-gene variations have no known function
- LD obscures the location of specific causative loci
 - Reduced ability to identify function
 - Pinpointing the exact causal variant in the genome remains a major challenge

Strongest association with intronic variants

ImSireR-Chr5-T1

Genetic heterogeneity

A mutation in APP protecting against Alzheimer's disease (Jonsson et al., 2012)

Gene action due to duplication in another gene

SCG5

SCG5 exon 3-6 dup

GREM1 upregulated in HMPS

LD obscures the location of causative mutation

Chr-6-89MB

How to prioritize candidate variants?

Nature Reviews | Genetics

Tsunami of 'new' data

- Improvement in genotyping array technology
- Greater access to low-cost sequencing
- 'New' technologies
 - Chromatin immuno-precipitation (ChIP) with NGS (ChIP-seq)
 - Gene expression
 - Whole exome sequencing
 - RNA-seq
 - Omics data

Challenges ahead

- Structural variants poorly tagged by current SNP-chips
- Current CNV arrays only detect large variants;
 - No systematic coverage of the vast number of small CNVs (including microsatellites)
- Merging massive amount of data (WGS, omics data, phenotypes, environment etc.)
- Greatest challenge will be to deciphering functional mechanism and clinical relevance

Conclusions

- Important advance towards deciphering genetic basis of complex trait through GWAS despite limitations
- 'Difficult' types of genetic variations become mappable through scientific and technological advances
- Explore biological meaning by combining genome-wide and knowledge-based approaches