Charting The Genotype-Phenotype Map: Lessons From Drosophila

Trudy F. C. Mackay Department of Genetics & W. M. Keck Center for Behavioral Biology North Carolina State University Raleigh, NC 27695 USA

AACTGGCCTCCTCCTC	CTCCTATACGTTACCGG	CGATTCCAAA
AACTGGCCTCCT	ATACGTTACCGG	AAACCTTAGC
AACTGGCCTCCT	ATACGTTACCGC	AAACCTTAGC
AACTGGCCTCCT	ATACGTTACCGC	kbAAACCTTAGC

Genetic Resources

Genetic Manipulation

Model Organism

Drosophila melanogaster Genetic Reference Panel (DGRP)

Living library of genetic variation

Community resource for association mapping complex traits

Replicated genotypes

Accurate phenotypes, multiple phenotypes (pleiotropy), multiple environments (GEI)

Freeze 1 genome sequences of 168 lines

Mackay et al. 2012. Nature 482:173

Freeze 2 Molecular Variation in DGRP Lines

Freeze 2 Genotyping

- 205 lines sequenced on Illumina platform **
- Initial variant discovery using 7 existing callers **
- Global list of variants grouped into haplotype bins **
- Reads re-aligned to haplotypes to count supporting and opposing reads *
- Final genotypes called by the Joint Genotyper for Inbred Lines (JGIL), which computes a ** quality score for each genotype and for each variant

Potentially Damaging Variants in DGRP Lines

Number of genes affected by potentially damaging alleles

- Potentially damaging annotations: SPLICE_SITE, START_LOST, EXON_DELETED, FRAME_SHIFT, STOP_GAINED, STOP_LOST
- Hundreds of genes affected per line
- Large gene families enriched for affected genes (e.g. olfactory receptors)
- Novel alleles for functional analysis

Variation in Genome Size From Indels in DGRP Lines

???

Genome Size vs. Damaging Mutations

Estimated genome size (Mb)

Deletions (relative to the reference genome) have more damaging effects

Other Information

Wolbachia infection status of each DGRP line

Cytogenetic analysis of polymorphic inversions: In(2L)t In(2R)Nova Scotia In(3L)Payne In(3R) Mourad In(3R)Payne In(3R)Kodani In(3R)C

Association Analyses

GWAS in the DGRP: Starvation Resistance

Most significant SNPs are low frequency

Standardized effects not small

Many significant SNPs (FDR < 0.1) Many sex-specific effects Novel genes

Local LD

Relationship Between Effect Size and MAF

Mackay et al. 2012. Nature 482:173

R_Spider Analysis of Ethanol Sensitivity GWAS www.BioProfiling.de

Additive Multi-SNP Model Explains Most Variation

Mackay et al. 2012. Nature 482:173

But **Predictive Ability** is Low

Trait	Broad Sense <i>H</i> ²	Predictive Ability*
Starvation Resistance	0.58	0.239 ± 0.008
Startle Response	0.56	0.230 ± 0.012
Chill Coma Recovery	0.43	-0.038 ± 0.008

*GBLUP, 5-fold cross validation; ~2.5 million common SNPs

- Small sample size?
 - Rare alleles?
- ✤ Alleles with large effects?
- Non-additive genetic variation?

Testing Multi-Locus Predictions: Flyland

Complex Genetic Architecture in Flyland

Huang et al., PNAS 109: 15553

SNP Effects Not Small

No Replication between Flyland and DGRP

DGRP common SNPs 2,611,167				DGRP rare SNPs 2,898,491		
DGRP Significant SNPs		Flyland SNPs Total (significant)				
	Starvation resistance	29	<i>Starvation resistan</i> 1,247,469 (<mark>267</mark>)	nce 91,947 (<mark>9</mark>)		
	Startle response 24	28	<i>Startle response</i> 1,465,891 (53)	139,347 (<mark>8</mark>)		
	Chill coma recovery 137	27	<i>Chill coma recover</i> 1,305,912 (<mark>308</mark>)	ry 100,520 (<mark>12</mark>)		

No Replication Between Flyland and DGRP: Not From Different *P*-value Thresholds

No Replication between Flyland and DGRP: Effects Not Correlated

Huang et al., PNAS 109: 15553

No Replication between Flyland and DGRP: SNPs not in LD

No Replication between Flyland and DGRP: Epistasis

Trait	Trait-associated common SNPs (DGRP + Flyland)	Significant epistatic pairs	Trait-associated SNPs with at least one significant interacting SNP (Flyland + DGRP)	
Starvation resistance	411 (144 + 267)	19,629	288 (57 + 231)	
Startle response	105 (52 + 53)	1,252	48 (11 + 37)	
Chill coma recovery	472 (164 + 308)	57,863	314 (79 + 235)	

Context Dependence Due to Differences in Allele Frequency

Epistatic Networks Reveal Common Interacting Genes

Huang et al., PNAS 109: 15553

Interconnected Networks of Common Interacting Genes

Starvation Resistance

Chill Coma Recovery

SNPs context-dependent, network architecture conserved

Huang et al., PNAS 109: 15553

Epistatic Interaction Networks Enriched for Known Genetic Interactions www.BioProfiling.de

Epistatic Interaction Networks Enriched for Known Genetic Interactions www.BioProfiling.de

General Strategy

- 1. Test for interactions between SNPs that do not replicate in different populations, reciprocally in each population
- 2. Within a population: pairwise search for epistasis using GWAS SNPs as focal SNPs
- 3. Within a population: Identify SNPs with different allele frequencies between extremes of quantitative trait distribution; use these as focal SNPs for pairwise GWAS

A Paradigm Shift?

Is this a lot of variation?

Or too little given molecular diversity? (~4 Million SNPs + non-SNP variants)

Additive SNP effects may be underestimated if they interact epistatically but the model does not include epistasis

Has the genome evolved to suppress effects of deleterious mutations?

Epistatic interactions = genetic basis of canalization (homeostasis)

Evidence for Epistasis From h^2 (Realized) and H^2

	Obse	Expected	
Trait	Realized <i>h</i> ²	H ² (Inbred Lines)	$H^2 = 2h^2/(1+h^2)$
Copulation latency	0.07	0.25	0.13
Startle response	0.16	0.58	0.28
Aggressive behavior	0.09	0.78	0.17
Ethanol knock- down time	0.08	0.24	0.15

Mackay *et al.* 2005, PNAS 102: 6622-6629; Edwards *et al.* 2006, PLoS Genetics 2: 3154; Jordan *et al.* 2007, Genome Biol. 8: R172; Morozova *et al.* 2009, Genetics 83: 733-745; Ayroles *et al.* 2009, Nat. Genet. 41: 299-307; Edwards *et al.* 2009, Genome Biol. 10: R76; Morozova *et al.* 2009, Genetics 83: 733-745

Evidence for Epistasis From *h*² (GBLUP) and *H*²

Apparent additivity

Estimates of V_A include V_{AA}
 Epistasis from change of magnitude of effects in different backgrounds

 Largely epistastic
 Epistasis from change of direction of effects in different backgrounds

Hypothesis

IF

 Extensive epistatic interaction networks suppress allelic effects in outbred populations

THEN EXPECT

- Large numbers of induced mutations in a single inbred background affect quantitative traits (decanalization)
- The same mutations have different effects in different genetic backgrounds
- Mutations affecting the same trait perturb the same underlying network and interact epistatically
- Response to selection from mutations affecting the same trait will be less than expected based on homozygous and heterozygous effects
- Natural variants suppress (buffer) effects of newly induced mutations

P-Element Mutagenesis in Drosophila

Large Numbers of Induced Mutations Affect Quantitative Traits?

21.9%

23.3%

34.7%

24.8%

41.1%

37.1%

32.7%

Dilda & Mackay 2002, Genetics 162: 1655; Norga *et al.* 2003, Curr. Biol. 13: 1388-1397; Harbison *et al.* 2004, Genetics 166: 1807-1823; Sambandan *et al.* 2006, Genetics 174: 1349-1363; Yamamoto *et al.* 2008, PNAS 105: 12393-12398; Edwards *et al.* 2009, BMC Biology 7: 29; Magwire *et al.* 2010, PLoS Genetics 6: e1001037; Morozova *et al.* 2011, Genetics 187: 1193-1205

Same Mutations Have Different Effects in Different Genetic Backgrounds?

Mutations Affecting the Same Trait Interact Epistatically?

1,2	1,3	1,4	1,5	1,6	1,7	1,8	1,9	1,10
	2,3	2,4	2,5	2,6	2,7	2,8	2,9	2,10
		3,4	3,5	3,6	3,7	3,8	3,9	3,10
			4,5	4,6	4,7	4,8	4,9	4,10
				5,6	5,7	5,8	5,9	5,10
				-	6.7	6,8	6,9	6,10
						7,8	7,79	7,10
							8,9	8,10
								9,10

Mutations Affecting the Same Trait Interact Epistatically?

Sambandan *et al.* 2006, Genetics 174: 1349-1363; Yamamoto *et al.* 2008, PNAS 105: 12393-12398; Magwire *et al.* 2010, PLoS Genetics 6: e1001037

Response to Selection From Mutations Less Than Additive?

Genotype

Serrano-Négron et al., unpublished data

Response to Selection From Mutations Less Than Additive?

$$p = 2/3; q = 1/3$$

$$V_A = 2pq\Sigma[a+d(q-p)]^2$$

$$V_D = \Sigma(2pqd)^2$$

$$h^2 = V_A/(V_A+V_D+V_E)$$

$$h^2_{EXP} = 0.951$$

$$R_1 = ih^2\sigma_P$$

$$R_{EXP} = 15.5$$

Serrano-Négron et al., unpublished data

Response to Selection From Mutations Less Than Additive?

Serrano-Négron et al., unpublished data

Natural Variants Suppress Effects of Newly Induced Mutations?

Expected – Observed = Estimate of Interaction Effect (1)

Natural Variants Suppress Effects of Newly Induced Mutations?

Natural Variants Suppress Effects of Newly Induced Mutations?

Lessons Learned

- Extensive epistasis for Drosophila quantitative traits
- Epistatic interactions define genetic networks that are:
 - Highly interconnected

Enriched for biologically plausible GO categories, metabolic and cellular pathways Novel

Implications of epistasis:

Additivity an emergent property of underlying epistatic networks

Population-specific genetic architecture for individual molecular variants, but common network

Missing heritability - small additive effects even though interactions highly significant

Individual risk prediction requires knowledge of interacting partners

(De)canalization and human disease

Genomic basis of selection response: population-specific

Potential for speciation

Team DGRP Freeze 2.0

Robert Anholt Wen Huang Yutaka Inoue Richard Lyman Mike Magwire Tanya Morozova Jason Peiffer Yazmin Serrano-Négron Eric Stone Lavanya Turlipati Aki Yamamoto

Spencer Johnson Aaron Tarone

Stephen Richards Richard Gibbs Yi Han Jeff Reid

Funding

National Institute on Alcohol Abuse and Alcoholism

Bart Deplancke Andreas Massouras

Eileen Furlong Jan Korbel Thomas Zichner

David Mittelman

Drosophila Systems Genetics

DGRP Transcriptomes

- Illumina RNA-Seq, pooled RNA from 192 DGRP lines (3-5 day old mated flies, whole bodies)
- ~ 100M fragments (100bp paired end) for females and males separately
- Aligned to R5.49 of the Flybase annotation and the reference genome
- Transcript models assembled based on RNA-Seq alignments
- ✤ 2,807 novel splice isoforms
- 3,504 (3.6M bp) Novel Transcribed Regions (NTRs)
- 427 and 228 NTRs genetically variable in males and females, respectively

Enabling Systems Genetics in the DGRP

✤ Affymetrix 2.0 tiling arrays

✤ 192 DGRP lines

✤ 3-5 day old, mated males and females

Whole bodies

eQTL Mapping

- Old, noisy technology
- Whole bodies?
- One developmental stage?
- Drosophila Variome Project (DVP) based on DGRP?

Co-Expression Modules

NTR positions, indicated by vertical bars, often negatively correlated with protein-coding genes