


Session 2

Genomic Prediction: towards use of full sequence and large populations Luc Janss, QGG, Aarhus University

GenSAP lay-out

Principles of Genomic Prediction and Genomic Selection

Training data:
Genotypes +
Phenotypes

Test data
(genotypes +
phenotypes)

Prediction equation Σg_ib_i

Use prediction for genomic selection (needs only a DNA sample)

Prediction works using whole-genome models (and fails when using mapping approaches)

Current Status Genomic Prediction

- Used in cattle, pigs, pilots in wheat, maize, attempts in human
- Current method: "GBLUP"
 - Equal weighting of SNPs
 - 'Relationship' approach
- Performs well
 - Within populations of small effective size
 - With strong structure and relationships between training / testing populations
- Limitations regarding # individuals, phenotypes, combining different SNP densities, ...

Current
genomebased
prediction
systems work
well, but only
in particular
(limited)
cases

Main challenges

- All SNPs are not equal
- 'Relationship' approach limits application
- Computational procedures not up to speed with genomics technology
- Merging in whole population data

Animals and SNP densities in cattle

	SNPs	# Animals
Ungenotyped	-	10.000.000 +
Elite cows	7K	100.000 +
Breeding bulls	54K	40.000
Sample of breeding bulls	777K	4.000
Elite bulls	Full sequence (20M SNPs)	1.000 (approx 250 DK)

Imputing all to full sequence is not an option

GenSAP Solutions

- Better LD with causal variants
 - Use full sequence
 - Use bioinformatics knowledge
- Better models allowing unequal weighting of SNPs
 - Variable selection models
- Build extensions
 - Plant specific genetics (selfing, polyploidy)
 - Interactions (GxE, dominance)
- Integration in population predictions (BLUP)
 - Modified BLUP for unequal weighting of SNPs
 - Improved 'single step' methods (larger, multi-trait, ...)

Program

Session 2:

13:45	Genomic prediction models: towards use of full sequence and large populations Senior Researcher Luc Janss, QGG, AU
14:00	The 1000 bull genomes project - reconstructing the past genetic history of cattle, and accelerating future gains Research Leader Ben Hayes, Dept. of Primary Industries, Victoria, Australia
14:45	Coffee break
15:15	Genomic selection using QTL information Senior Scientist Didier Boichard, INRA, France
15:35	Visions and perspectives for genomic prediction in animals, plants and humans Professor Daniel Gianola, University of Wisconsin-Madison, USA
15:55	The benefits of haplotypes as predictors of genetic merit PhD Student Beatriz Castro Dias Cuyabano, QGG, AU
16:15	Poster session & reception